Skip to main content

Advertisement

Log in

Immature Exosomes Derived from MicroRNA-146a Overexpressing Dendritic Cells Act as Antigen-Specific Therapy for Myasthenia Gravis

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Myasthenia gravis (MG) is a neurological autoimmune disease characterized by fluctuating weakness of certain voluntary muscles. Current treatments for MG are largely directed at suppressing the whole immune system by using immunosuppressants or glucocorticoids and often cause several side effects. The ideal therapeutic methods for MG should suppress aberrant immunoactivation specifically, while retaining normal function of the immune system. In this study, we first produced exosomes from microRNA-146a overexpressing dendritic cells (DCs). Then, we observed suppressive effects of those exosomes in experimental autoimmune myasthenia gravis (EAMG) mice. Results showed that exosomes from microRNA-146a overexpressing DCs expressed decreased levels of CD80 and CD86. In experimental autoimmune MG, exosomes from microRNA-146a overexpressing DCs suppressed ongoing clinical MG in mice and altered T helper cell profiles from Th1/Th17 to Th2/Treg both in serum and spleen, and the therapeutic effects of those exosomes were antigen-specific and partly dose dependent. All the findings provide experimental basis for antigen-specific therapy of MG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Christadoss, P., J. Lindstrom, S. Munro, and N. Talal. 1985. Muscle acetylcholine receptor loss in murine experimental autoimmune myasthenia gravis: Correlated with cellular, humoral and clinical responses. Journal of Neuroimmunology 8: 29–44.

    Article  CAS  PubMed  Google Scholar 

  2. Drachman, D.B. 1994. Myasthenia gravis. The New England Journal of Medicine 330: 1797–1810.

    Article  CAS  PubMed  Google Scholar 

  3. Rodgaard, A., F.C. Nielsen, R. Djurup, F. Somnier, and S. Gammeltoft. 1987. Acetylcholine receptor antibody in myasthenia gravis: Predominance of IgG subclasses 1 and 3. J Clin. Exp Immunol 67: 82–88.

    CAS  Google Scholar 

  4. Christadoss, P., M. Poussin, and C. Deng. 2000. Animal models of myasthenia gravis. Clinical Immunology 94: 75–87.

    Article  CAS  PubMed  Google Scholar 

  5. Imai, T., S. Suzuki, E. Tsuda, Y. Nagane, H. Murai, M. Masuda, S. Konno, Y. Suzuki, S. Nakane, K. Fujihara, N. Suzuki, and K. Utsugisawa. 2015. Oral corticosteroid therapy and present disease status in myasthenia gravis. Muscle & Nerve 51: 692–696.

    Article  CAS  Google Scholar 

  6. Luo, J., and J. Lindstrom. 2014. Antigen-specific immunotherapeutic vaccine for experimental autoimmune myasthenia gravis. Journal of Immunology 193: 5044–5055.

    Article  CAS  Google Scholar 

  7. Banchereau, J., and R.M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  8. Osorio, F., C. Fuentes, M.N. López, F. Salazar-Onfray, and F.E. González. 2015. Role of dendritic cells in the induction of lymphocyte tolerance. Frontiers in Immunology 6: 535.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chung, C.Y., D. Ysebaert, Z.N. Berneman, and N. Cools. 2013. Dendritic cells: Cellular mediators for immunological tolerance. Clinical & Developmental Immunology 2013: 972865.

    Article  Google Scholar 

  10. O’Connell, R.M., D.S. Rao, A.A. Chaudhuri, and D. Baltimore. 2010. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews. Immunology 10: 111–122.

    Article  PubMed  Google Scholar 

  11. Fukaya, T., and Y. Tomari. 2012. MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Molecular Cell 48: 825–836.

    Article  CAS  PubMed  Google Scholar 

  12. Du, J., J. Wang, G. Tan, Z. Cai, L. Zhang, B. Tang, and Z. Wang. 2012. Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Medical Oncology 29: 2814–2823.

    Article  CAS  PubMed  Google Scholar 

  13. Karrich, J.J., L.C. Jachimowski, M. Libouban, A. Iyer, K. Brandwijk, E.W. Taanman-Kueter, M. Nagasawa, E.C. de Jong, C.H. Uittenbogaart, and B. Blom. 2013. MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood 122: 3001–3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, H., X. Huang, C. Lu, M.S. Cairo, and X. Zhou. 2015. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. The Journal of Biological Chemistry 290: 2831–2841.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, T., Z. Li, T. Jing, W. Zhu, J. Ge, X. Zheng, X. Pan, H. Yan, and J. Zhu. 2011. MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells. FEBS Letters 585: 567–573.

    Article  CAS  PubMed  Google Scholar 

  16. Bodey, B., Jr B. Bodey, S.E. Siegel, and H.E. Kaiser. 2000. Failure of cancer vaccines: The significant limitations of this approach to immunotherapy. Anticancer Research 20: 2665–2676.

    CAS  PubMed  Google Scholar 

  17. Segura, E., S. Amigorena, and C. Théry. 2005. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Molecules & Diseases 35: 89.

    Article  CAS  Google Scholar 

  18. Yin, W., S. Ouyang, Y. Li, B. Xiao, and H. Yang. 2013. Immature dendritic cell-derived exosomes: A promise subcellular vaccine for autoimmunity. Inflammation 36: 232–240.

    Article  CAS  PubMed  Google Scholar 

  19. Pêche, H., K. Renaudin, G. Beriou, E. Merieau, S. Amigorena, and M.C. Cuturi. 2006. Induction of tolerance by exosome and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am Transplantat 6: 1541–1550.

    Article  Google Scholar 

  20. Yang, X., S. Meng, H. Jiang, C. Zhu, and W. Wu. 2011. Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. The Journal of Surgical Research 171: 826–832.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, S.H., N. Bianco, R. Menon, E.R. Lechman, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2006. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Molecular Therapy 13: 289–300.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, S.H., N.R. Bianco, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2007. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. Journal of Immunology 179: 2242–2249.

    Article  CAS  Google Scholar 

  23. Kim, S.H., E.R. Lechman, N. Bianco, R. Menon, A. Keravala, J. Nash, Z. Mi, S.C. Watkins, A. Gambotto, and P.D. Robbins. 2005. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. Journal of Immunology 174: 6440–6448.

    Article  CAS  Google Scholar 

  24. Bu, N., H.Q. Wu, G.L. Zhang, S.Q. Zhan, R. Zhang, Q.Y. Fan, Y.L. Li, Y.F. Zhai, and H.W. Ren. 2015. Immature dendritic cell exosomes suppress experimental autoimmune myasthenia gravis. Journal of Neuroimmunology 285: 71–75.

    Article  CAS  PubMed  Google Scholar 

  25. Li, X.L., H. Li, M. Zhang, H. Xu, L.T. Yue, X.X. Zhang, S. Wang, C.C. Wang, Y.B. Li, Y.C. Dou, and R.S. Duan. 2016. Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway. Journal of Neuroinflammation 13: 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Min, W.P., R. Gorczynski, X.Y. Huang, M. Kushida, P. Kim, M. Obataki, J. Lei, R.M. Suri, and M.S. Cattral. 2000. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. Journal of Immunology 164: 161–167.

    Article  CAS  Google Scholar 

  27. Doffek, K., X. Chen, S.L. Sugg, and J. Shilyansky. 2011. Phosphatidylserine inhibits NF-κB and p38 MAPK activation in human monocyte derived dendritic cells. Molecular Immunology 48: 1771–1777.

    Article  CAS  PubMed  Google Scholar 

  28. Matsue H, Yang C, Matsue K, Edelbaum D, Mummert M, Takashima A Contrasting impacts of immunosuppressive agents (rapamycin, FK506, cyclosporin A, and dexamethasone) on bidirectional dendritic cell-T cell interaction during antigen presentation. J Immunol 169:3555–3564.

  29. Manavella, P.A., and I. Rubio-Somoza. 2011. Engineering elements for gene silencing: The artificial microRNAs technology. Methods in Molecular Biology 732: 121–123.

    Article  CAS  PubMed  Google Scholar 

  30. Pusic, A.D., K.M. Pusic, B.L. Clayton, and R.P. Kraig. 2014. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. Journal of Neuroimmunology 266: 12–23.

    Article  CAS  PubMed  Google Scholar 

  31. Li, X., J.J. Li, J.Y. Yang, D.S. Wan, W. Zhao, W.J. Song, W.M. Li, J.F. Wang, W. Han, Z.C. Zhang, Y. Yu, D.Y. Cao, and K.F. Dou. 2012. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model. PloS One 7: e44045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hall, B.M. 2015. T cell: Soldiers and spies—The surveillance and control of effector T cells by regulatory T cell. Clinical Journal of the American Society of Nephrology 10 (11): 2050–2064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Talaat, R.M., S.F. Mohamed, I.H. Bassyouni, and A.A. Raouf. 2015. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine 72 (2): 146–153.

    Article  CAS  PubMed  Google Scholar 

  34. Xiao, J., F. Zhu, X. Liu, and J. Xiong. 2012. Th1/Th2/Th17/Treg expression in cultured PBMCs with antiphospholipid antibodies. Molecular Medicine Reports 6 (5): 1035–1039.

    CAS  PubMed  Google Scholar 

  35. Alexandre, P.B., D.B. Rodrigues, and V. Rodrigues. 2015. Expression pattern of transcription factors and intracellular cytokines reveals that clinically cured tuberculosis is accompanied by an increase in Mycobacterium-specific Th1, Th2, and Th17 cells. BioMed Research International 2015: 591237.

    PubMed  PubMed Central  Google Scholar 

  36. Pitt, J.M., F. André, S. Amigorena, J.C. Soria, A. Eggermont, G. Kroemer, and L. Zitvogel. 2016. Dendritic cell-derived exosomes for cancer therapy. The Journal of Clinical Investigation 126 (4): 1224–1232.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tan, A., H. De La Peña, and A.M. Seifalian. 2010. The application of exosomes as a nanoscale cancer vaccine. International Journal of Nanomedicine 10 (5): 889–900.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No. 81571173 and No. 81601048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Ouyang, S., Luo, Z. et al. Immature Exosomes Derived from MicroRNA-146a Overexpressing Dendritic Cells Act as Antigen-Specific Therapy for Myasthenia Gravis. Inflammation 40, 1460–1473 (2017). https://doi.org/10.1007/s10753-017-0589-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0589-2

KEY WORDS

Navigation