Skip to main content

Advertisement

Log in

Immature Dendritic Cell-Derived Exosomes: a Promise Subcellular Vaccine for Autoimmunity

  • Published:
Inflammation Aims and scope Submit manuscript

An Erratum to this article was published on 19 December 2012

Abstract

Exosomes, 60–90-nm-sized vesicles, are produced by a large number of cell types, including tumor cells, neurons, astrocytes, hemocytes, intestinal epithelial cells, and so on. Dendritic cell (DC), the most potent professional antigen-presenting cell in the immune system, produces exosomes in the course of maturation. Mature DCs produce exosomes with the ability to elicit potent immunoactivation, resulting in tumor eradication and bacterial or virus elimination. Given the notion that exosomes are stable and easy to be modified artificially, autologous mature DC-derived exosomes have been vaccinated into patients with malignant diseases. In clinical trials utilizing exosomes as therapeutic approaches, researchers observed considerable curative effect with little side effect. However, immature or suppressive DC-derived exosomes harbor anti-inflammatory properties distinct from mature DC-derived exosomes. In murine models of autoimmune disease and transplantation, immature DC-derived exosomes reduced T cell-dependent immunoactivation, relieved clinical manifestation of autoimmune disease, and prolonged survival time of transplantation. Although the exact mechanism of how immature DC-derived exosomes function in vivo is still unclear, and there are no clinical trials regarding application of exosome vaccine into patients with autoimmune disease, we will analyze the promise of immature DC-derived exosomes as a subcellular vaccine in autoimmunity in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rossi, M., and J.W. Young. 2005. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. Journal of Immunology 175: 1373–1381.

    CAS  Google Scholar 

  2. Romani, N., B.E. Clausen, and P. Stoitzner. 2010. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunological Reviews 234: 120–141.

    Article  PubMed  CAS  Google Scholar 

  3. Thomson, A.W., D.A. Geller, C. Gandhi, N. Murase, A.J. Demetris, and D. Beer-Stolz. 2011. Hepatic antigen-presenting cells and regulation of liver transplant outcome. Immunologic Research 50: 2221–2227.

    Article  Google Scholar 

  4. Segura, E., J. Valladeau-Guilemond, M.H. Donnadieu, X. Sastre-Garau, V. Soumelis, and S. Amigorena. 2012. Characterization of resident and migratory dendritic cells in human lymph nodes. Journal of Experimental Medicine 209: 653–660.

    Article  PubMed  CAS  Google Scholar 

  5. Tan, J.K., and H.C. O’Neill. 2007. Concise review: dendritic cell development in the context of the spleen microenvironment. Stem Cells 25: 2139–2145.

    Article  PubMed  Google Scholar 

  6. Zanoni, I., and F. Granucci. 2011. The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity 4: 23–32.

    Article  Google Scholar 

  7. Morva, A., S. Lemoine, A. Achour, J.O. Pers, P. Youinou, and C. Jamin. 2012. Maturation and function of human dendritic cells are regulated by B lymphocytes. Blood 119: 106–114.

    Article  PubMed  CAS  Google Scholar 

  8. Prado, C., F. Contreras, H. González, P. Díaz, D. Elgueta, M. Barrientos, A.A. Herrada, Á. Lladser, S. Bernales, and R. Pacheco. 2012. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. Journal of Immunology 188: 3062–3070.

    Article  CAS  Google Scholar 

  9. Wang, Z., A. Sokolovska, R. Seymour, J.P. Sundberg, and H. Hogenesch. 2012. SHARPIN is essential for cytokine production, NF-κB signaling, and induction of Th1 differentiation by dendritic cells. PLoS One 7: e31809.

    Article  PubMed  CAS  Google Scholar 

  10. Yang, H., Y. Zhang, M. Wu, J. Li, W. Zhou, G. Li, X. Li, B. Xiao, and P. Christadoss. 2010. Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dendritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and Foxp3+ regulatory T cell profile. Inflammation Research 59: 197–205.

    Article  PubMed  CAS  Google Scholar 

  11. Wakkach, A., N. Fournier, V. Brun, J.P. Breittmayer, F. Cottrez, and H. Groux. 2003. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18: 605–617.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, X., J.R. Gordon, and J. Xiang. 2002. Advances in dendritic cell-based vaccine of cancer. Cancer Biotherapy and Radiopharmaceuticals 17: 601–619.

    Article  PubMed  CAS  Google Scholar 

  13. Markowicz, S., Z.I. Nowecki, P. Rutkowski, A.W. Lipkowski, M. Biernacka, A. Jakubowska-Mucka, T. Switaj, A. Misicka, H. Skurzak, H. Polowniak-Pracka, and J. Walewski. 2012. Adjuvant vaccination with melanoma antigen-pulsed dendritic cells in stage III melanoma patients. Medical Oncology. doi:10.1007/s12032-012-0168-1.

  14. Decker, W.K., and A. Safdar. 2010. Dendritic cell vaccines for the immunocompromised patient: prevention of influenza virus infection. Expert Review of Vaccines 9: 721–730.

    Article  PubMed  CAS  Google Scholar 

  15. Ren, W.N., C.K. Chang, H.H. Fan, F. Guo, Y.N. Ren, J. Yang, J. Guo, and X. Li. 2011. A combination of exosomes carrying TSA derived from HLA-A2-positive human white buffy coat and polyl: C for use as a subcellular antitumor vaccine. Journal of Immunoassay and Immunochemistry 32: 207–218.

    Article  PubMed  CAS  Google Scholar 

  16. Chaput, N., N.E. Schartz, F. André, J. Taïeb, S. Novault, P. Bonnaventure, N. Aubert, J. Bernard, F. Lemonnier, M. Merad, G. Adema, M. Adams, M. Ferrantini, A.F. Carpentier, B. Escudier, T. Tursz, E. Angevin, and L. Zitvogel. 2004. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. Journal of Immunology 172: 2137–2146.

    CAS  Google Scholar 

  17. André, F., N. Chaput, N.E. Schartz, C. Flament, N. Aubert, J. Bernard, F. Lemonnier, G. Raposo, B. Escudier, D.H. Hsu, T. Tursz, S. Amigorena, E. Angevin, and L. Zitvogel. 2004. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. Journal of Immunology 172: 2126–2136.

    Google Scholar 

  18. Cools, N., V.F. Van Tendeloo, E.L. Smits, M. Lenjou, G. Nijs, D.R. Van Bockstaele, Z.N. Berneman, and P. Ponsaerts. 2008. Immunosuppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4+ regulatory T cells. Journal of Cellular and Molecular Medicine 12: 690–700.

    Article  PubMed  CAS  Google Scholar 

  19. Oh, K., Y.S. Kim, and D.S. Lee. 2011. Maturation-resistant dendritic cells ameliorate experimental autoimmune uveoretinitis. Immune Network 11: 399–405.

    Article  PubMed  Google Scholar 

  20. Sun, X., Z.J. Gong, Z.W. Wang, T. Li, J.Y. Zhang, H.C. Sun, S. Liu, L. Huang, C. Huang, and Z.H. Peng. 2012. IDO-competent-DCs induced by IFN-γ attenuate acute rejection in rat liver transplantation. Journal of Clinical Immunology 32: 837–847.

    Article  PubMed  CAS  Google Scholar 

  21. Ezzelarab, M., and A.W. Thomson. 2011. Tolerogenic dendritic cells and their role in transplantation. Seminars in Immunology 23: 252–263.

    Article  PubMed  CAS  Google Scholar 

  22. Keller, S., M.P. Sanderson, A. Stoeck, and P. Altevogt. 2006. Exosomes: from biogenesis and secretion to biological function. Immunology Letters 107: 102–108.

    Article  PubMed  CAS  Google Scholar 

  23. Yang, C., S.H. Kim, N.R. Bianco, and P.D. Robbins. 2011. Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model. PLoS One 6: e22517.

    Article  PubMed  CAS  Google Scholar 

  24. Lachenal, G., K. Pernet-Gallay, M. Chivet, F.J. Hemming, A. Belly, G. Bodon, B. Blot, G. Haase, Y. Goldberg, and R. Sadoul. 2011. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Molecular and Cellular Neuroscience 46: 409–418.

    Article  PubMed  CAS  Google Scholar 

  25. Mallegol, J., G. van Niel, and M. Heyman. 2005. Phenotypic and functional characterization of intestinal epithelial exosomes. Blood Cells Molecules and Diseases 35: 11–16.

    Article  CAS  Google Scholar 

  26. Guescini, M., S. Genedani, V. Stocchi, and L.F. Agnati. 2010. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. Journal of Neural Transmission 117: 1–4.

    Article  PubMed  CAS  Google Scholar 

  27. Pierre, P., S.J. Turley, E. Gatti, M. Hull, J. Meltzer, A. Mirza, K. Inaba, R.M. Steinman, and I. Mellman. 1997. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388: 787–792.

    Article  PubMed  CAS  Google Scholar 

  28. Mellman, I., S.J. Turley, and R.M. Steinman. 1998. Antigen processing for amateurs and professionals. Trends in Cell Biology 8: 231–237.

    Article  PubMed  CAS  Google Scholar 

  29. Tamai, K., N. Tanaka, T. Nakano, E. Kakazu, Y. Kondo, J. Inoue, M. Shiina, K. Fukushima, T. Hoshino, K. Sano, Y. Ueno, T. Shimosegawa, and K. Sugamura. 2010. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochemical and Biophysical Research Communications 399: 384–390.

    Article  PubMed  CAS  Google Scholar 

  30. Buschow, S.I., E.N. Nolte-'t Hoen, G. van Niel, M.S. Pols, T. ten Broeke, M. Lauwen, F. Ossendorp, C.J. Melief, G. Raposo, R. Wubbolts, M.H. Wauben, and W. Stoorvogel. 2009. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10: 1528–1542.

    Article  PubMed  CAS  Google Scholar 

  31. Johansson, S.M., C. Admyre, A. Scheynius, and S. Gabrielsson. 2008. Different types of in vitro generated human monocyte-derived dendritic cells release exosomes with distinct phenotypes. Immunology 123: 491–499.

    Article  PubMed  CAS  Google Scholar 

  32. Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nature Medicine 4: 594–600.

    Article  PubMed  CAS  Google Scholar 

  33. Aline, F., D. Bout, S. Amigorena, P. Roingeard, and I. Dimier-Poisson. 2004. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infection and Immunity 72: 4127–4137.

    Article  PubMed  CAS  Google Scholar 

  34. Del Cacho, E., M. Gallego, S.H. Lee, H.S. Lillehoj, J. Quilez, E.P. Lillehoj, and C. Sánchez-Acedo. 2012. Induction of protective immunity against Eimeria tenella, Eimeria maxima, and Eimeria acervulina infections using dendritic cell-derived exosomes. Infection and Immunity 80: 1909–1916.

    Article  PubMed  Google Scholar 

  35. Luketic, L., J. Delanghe, P.T. Sobol, P. Yang, E. Frotten, K.L. Mossman, J. Gauldie, J. Bramson, and Y. Wan. 2007. Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. Journal of Immunology 179: 5024–5032.

    CAS  Google Scholar 

  36. Escudier, B., T. Dorval, N. Chaput, F. André, M.P. Caby, S. Novault, C. Flament, C. Leboulaire, C. Borg, S. Amigorena, C. Boccaccio, C. Bonnerot, O. Dhellin, M. Movassagh, S. Piperno, C. Robert, V. Serra, N. Valente, J.B. Le Pecq, A. Spatz, O. Lantz, T. Tursz, E. Angevin, and L. Zitvogel. 2005. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. Journal of Translational Medicine 3: 10.

    Article  PubMed  Google Scholar 

  37. Morse, M.A., J. Garst, T. Osada, S. Khan, A. Hobeika, T.M. Clay, N. Valente, R. Shreeniwas, M.A. Sutton, A. Delcayre, D.H. Hsu, J.B. Le Pecq, and H.K. Lyerly. 2005. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. Journal of Translational Medicine 3: 9.

    Article  PubMed  Google Scholar 

  38. Pêche, H., M. Heslan, C. Usal, S. Amigorena, and M.C. Cuturi. 2003. Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation 76: 1503–1510.

    Article  PubMed  Google Scholar 

  39. Bianco, N.R., S.H. Kim, M.A. Ruffner, and P.D. Robbins. 2009. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis & Rheumatism 60: 380–389.

    Article  CAS  Google Scholar 

  40. Kim, S.H., N.R. Bianco, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2007. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. Journal of Immunology 179: 2242–2249.

    CAS  Google Scholar 

  41. Pêche, H., K. Renaudin, G. Beriou, E. Merieau, S. Amigorena, and M.C. Cuturi. 2006. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. American Journal of Transplantation 6: 1541–1550.

    Article  PubMed  Google Scholar 

  42. Kim, S.H., N. Bianco, R. Menon, E.R. Lechman, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2006. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Molecular Therapy 13: 289–300.

    Article  PubMed  CAS  Google Scholar 

  43. Kim, S.H., E.R. Lechman, N. Bianco, R. Menon, A. Keravala, J. Nash, Z. Mi, S.C. Watkins, A. Gambotto, and P.D. Robbins. 2005. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. Journal of Immunology 174: 6440–6448.

    CAS  Google Scholar 

  44. Yang, X., S. Meng, H. Jiang, C. Zhu, and W. Wu. 2011. Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. Journal of Surgical Research 171: 826–832.

    Article  PubMed  CAS  Google Scholar 

  45. Cai, Z., W. Zhang, F. Yang, L. Yu, Z. Yu, J. Pan, L. Wang, X. Cao, and J. Wang. 2012. Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Research 22: 607–610.

    Article  PubMed  CAS  Google Scholar 

  46. Simpson, R.J., S.S. Jensen, and J.W. Lim. 2008. Proteomic profiling of exosomes: current perspectives. Proteomics 8: 4083–4099.

    Article  PubMed  CAS  Google Scholar 

  47. Simpson, R.J., J.W. Lim, R.L. Moritz, and S. Mathivanan. 2009. Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics 6: 267–283.

    Article  PubMed  CAS  Google Scholar 

  48. Poliakov, A., M. Spilman, T. Dokland, C.L. Amling, and J.A. Mobley. 2009. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. The Prostate 69: 159–167.

    Article  PubMed  Google Scholar 

  49. Katzmann, D.J., G. Odorizzi, and S.D. Emr. 2002. Receptor downregulation and multivesicular-body sorting. Nature Reviews Molecular Cell Biology 3: 893–905.

    Article  PubMed  CAS  Google Scholar 

  50. Clayton, A., C.L. Harris, J. Court, M.D. Mason, and B.P. Morgan. 2003. Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. European Journal of Immunology 33: 522–531.

    Article  PubMed  CAS  Google Scholar 

  51. Lamparski, H.G., A. Metha-Damani, J.Y. Yao, S. Patel, D.H. Hsu, C. Ruegg, and J.B. Le Pecq. 2002. Production and characterization of clinical grade exosomes derived from dendritic cells. Journal of Immunological Methods 270: 211–226.

    Article  PubMed  CAS  Google Scholar 

  52. Hammond, C., L.K. Denzin, M. Pan, J.M. Griffith, H.J. Geuze, and P. Cresswell. 1998. The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules. Journal of Immunology 161: 3282–3291.

    CAS  Google Scholar 

  53. Théry, C., A. Regnault, J. Garin, J. Wolfers, L. Zitvogel, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1999. Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73. The Journal of Cell Biology 147: 599–610.

    Article  PubMed  Google Scholar 

  54. Théry, C., M. Boussac, P. Véron, P. Ricciardi-Castagnoli, G. Raposo, J. Garin, and S. Amigorena. 2001. Proteomic analysis of dendritic cell-derived exosome: a secreted subcellular compartment distinct form apoptotic vesicles. Journal of Immunology 166: 7309–7318.

    Google Scholar 

  55. Théry, C., L. Duban, E. Segura, P. Véron, O. Lantz, and S. Amigorena. 2002. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nature Immunology 3: 1156–1162.

    Article  PubMed  Google Scholar 

  56. Clayton, A., J. Court, H. Navabi, M. Adams, M.D. Mason, J.A. Hobot, G.R. Newman, and B. Jasani. 2001. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. Journal of Immunological Methods 247: 163–174.

    Article  PubMed  CAS  Google Scholar 

  57. Hoen, E.N., E.J. Van der Vlist, M. Aalberts, H.C. Mertens, B.J. Bosch, W. Bartelink, E. Mastrobattista, E.V. van Gaal, W. Stoorvogel, G.J. Arkesteijn, and M.H. Wauben. 2012. Quantitative and qualitative flow cytometric analysis of nano-sized cell-derived membrane vesicles. Nanomedicine: Nanotechnology, Biology and Medicine 8: 712–720.

    Article  Google Scholar 

  58. Segura, E., S. Amigorena, and C. Théry. 2005. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Molecules and Diseases 35: 89–93.

    Article  CAS  Google Scholar 

  59. Subra, C., K. Laulagnier, B. Perret, and M. Record. 2007. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89: 205–212.

    Article  PubMed  CAS  Google Scholar 

  60. Laulagnier, K., C. Motta, S. Hamdi, S. Roy, F. Fauvelle, J.F. Pageaux, T. Kobayashi, J.P. Salles, B. Perret, C. Bonnerot, and M. Record. 2004. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem Journal 380: 161–171.

    Article  CAS  Google Scholar 

  61. Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  PubMed  CAS  Google Scholar 

  62. Turner, M.L., F.M. Schnorfeil, and T. Brocker. 2011. MicroRNAs regulate dendritic cell differentiation and function. Journal of Immunology 187: 3911–3917.

    Article  CAS  Google Scholar 

  63. Kosaka, N., H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, and T. Ochiya. 2010. Secretory mechanisms and intercellular transfer of microRNAs in living cells. The Journal of Biology Chemistry 285: 17442–17452.

    Article  CAS  Google Scholar 

  64. Vickers, K.C., and A.T. Remaley. 2012. Lipid-based carriers of microRNAs and intercellular communication. Current Opinion in Lipidology 23: 91–97.

    Article  PubMed  CAS  Google Scholar 

  65. Montecalvo, A., A.T. Larregina, W.J. Shufesky, D.B. Stolz, M.L. Sullivan, J.M. Karlsson, C.J. Baty, G.A. Gibson, G. Erdos, Z. Wang, J. Milosevic, O.A. Tkacheva, S.J. Divito, R. Jordan, J. Lyons-Weiler, S.C. Watkins, and A.E. Morelli. 2012. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119: 756–766.

    Article  PubMed  CAS  Google Scholar 

  66. Mittelbrunn, M., C. Gutiérrez-Vázquez, C. Villarroya-Beltri, S. González, F. Sánchez-Cabo, M.Á. González, A. Bernad, and F. Sánchez-Madrid. 2011. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications 2: 282.

    Article  PubMed  Google Scholar 

  67. Stoorvogel, W. 2012. Functional transfer of microRNA by exosomes. Blood 119: 646–648.

    Article  PubMed  CAS  Google Scholar 

  68. Ramachandran, S., and V. Palanisamy. 2012. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdisciplinary Reviews: RNA 3: 286–293.

    Article  PubMed  CAS  Google Scholar 

  69. Chen, X., H. Liang, J. Zhang, K. Zen, and C.Y. Zhang. 2012. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein & Cell 3: 28–37.

    Article  CAS  Google Scholar 

  70. Szántó, S., T. Koreny, K. Mikecz, T.T. Glant, Z. Szekanecz, and J. Varga. 2007. Inhibition of indoleamine 2,3-dioxygenase-mediated tryptophan catabolism accelerates collagen-induced arthritis in mice. Arthritis Research & Therapy 9: R50.

    Article  Google Scholar 

  71. Bastos-Amador, P., B. Pérez-Cabezas, N. Izquierdo-Useros, M.C. Puertas, J. Martinez-Picado, R. Pujol-Borrell, M. Naranjo-Gómez, and F.E. Borràs. 2012. Capture of cell-derived microvesicles (exosomes and apoptotic bodies) by human plasmacytoid dendritic cells. Journal of Leukocyte Biology 91: 751–758.

    Article  PubMed  CAS  Google Scholar 

  72. Wolfers, J., A. Lozier, G. Raposo, A. Regnault, C. Théry, C. Masurier, C. Flament, S. Pouzieux, F. Faure, T. Tursz, E. Angevin, S. Amigorena, and L. Zitvogel. 2001. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine 7: 297–303.

    Article  PubMed  CAS  Google Scholar 

  73. Fleissner, F., Y. Goerzig, A. Haverich, and T. Thum. 2012. Microvesicles as novel biomarkers and therapeutic targets in transplantation medicine. American Journal of Transplantation 12: 289–297.

    Article  PubMed  CAS  Google Scholar 

  74. Qazi, K.R., U. Gehrmann, E. Domange Jordö, M.C. Karlsson, and S. Gabrielsson. 2009. Antigen-loaded exosomes alone induce Th1-type memory through a B cell-dependent mechanism. Blood 113: 2673–2683.

    Article  PubMed  CAS  Google Scholar 

  75. Delcayre, A., A. Estelles, J. Sperinde, T. Roulon, P. Paz, B. Aguilar, J. Villanueva, S. Khine, and J.B. Le Pecq. 2005. Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cells, Molecules, and Diseases 35: 158–168.

    Article  PubMed  CAS  Google Scholar 

  76. Viaud, S., M. Terme, C. Flament, J. Taieb, F. André, S. Novault, B. Escudier, C. Robert, S. Caillat-Zucman, T. Tursz, L. Zitvogel, and N. Chaput. 2009. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 4: e4942.

    Article  PubMed  Google Scholar 

  77. Taieb, J., N. Chaput, N. Schartz, S. Roux, S. Novault, C. Ménard, F. Ghiringhelli, M. Terme, A.F. Carpentier, G. Darrasse-Jèze, F. Lemonnier, and L. Zitvogel. 2006. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. Journal of Immunology 176: 2722–2729.

    CAS  Google Scholar 

Download references

Declaration of Interest

The authors declare that there are no financial, consulting, or personal relationships with other people or organizations that could influence the authors’ work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Yang.

Additional information

The content has not been published or submitted for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, W., Ouyang, S., Li, Y. et al. Immature Dendritic Cell-Derived Exosomes: a Promise Subcellular Vaccine for Autoimmunity. Inflammation 36, 232–240 (2013). https://doi.org/10.1007/s10753-012-9539-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9539-1

KEY WORDS

Navigation