Skip to main content

Advertisement

Log in

Genistein Protects Against Ox-LDL-Induced Inflammation Through MicroRNA-155/SOCS1-Mediated Repression of NF-ĸB Signaling Pathway in HUVECs

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Genistein plays an important role in the prevention of atherosclerosis. However, the underlying mechanisms have not been fully investigated. In this study, human umbilical vein endothelial cells (HUVECs) were pretreated with genistein (10, 100, and 1000 nM) for 6 h and then exposed to ox-LDL (50 mg/L) for another 24 h. Results showed that ox-LDL induced the expressions of E-selectin, P-selectin, monocyte chemotactic protein-1, interleukin-8, vascular adhesion molecule-1, and intercellular adhesion molecule-1, which were counteracted by genistein. The inhibitory effect was further enhanced with the augment of genistein (10, 100, and 1000 nM). Further analyses demonstrated the effect of genistein was associated with reducing miR-155 and elevating SOCS1, and miR-155 mimics or SOCS1 siRNA acted similarly in genistein ameliorating inflammation. Moreover, the effect of genistein was accompanied with the inhibition of the NF-ĸB signaling pathway. The present study indicates that genistein could reverse ox-LDL-induced inflammation through miR-155/SOCS1-mediated repression of the NF-ĸB signaling pathway in HUVECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Castellon, X., and V. Bogdanova. 2016. Chronic inflammatory diseases and endothelial dysfunction. Aging Dis 7 (1): 81–89.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gimbrone, M.A. Jr., and G. García-Cardeña. 2016. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research 118 (4): 620–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Soeki, T., and M. Sata. 2016. Inflammatory biomarkers and atherosclerosis. International Heart Journal 57 (2): 134–139.

    Article  CAS  PubMed  Google Scholar 

  4. Taleb, S. 2016. Inflammation in atherosclerosis. Archives of Cardiovascular Diseases 109 (12): 708–715.

    Article  PubMed  Google Scholar 

  5. Tousoulis, D., E. Oikonomou, E.K. Economou, F. Crea, and J.C. Kaski. 2016. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. European Heart Journal 37 (22): 1723–1732.

    Article  PubMed  Google Scholar 

  6. Goya, L., M.A. Martín, B. Sarriá, S. Ramos, R. Mateos, and L. Bravo. 2016. Effect of cocoa and its flavonoids on biomarkers of inflammation: studies of cell culture, animals and humans. Nutrients 8 (4): 212.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gupta, S.K., S. Dongare, R. Mathur, I.R. Mohanty, S. Srivastava, S. Mathur, and T.C. Nag. 2015. Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats. Molecular and Cellular Biochemistry 408 (1–2): 63–72.

    Article  CAS  PubMed  Google Scholar 

  8. Ji, G., Y. Zhang, Q. Yang, S. Cheng, J. Hao, X. Zhao, and Z. Jiang. 2012. Genistein suppresses LPS-induced inflammatory response through inhibiting NF-ĸB following AMP kinase activation in RAW 264.7 macrophages. PloS One 7 (12): e53101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, X.J., H.R. Bao, X.L. Zeng, and J.M. Wei. 2016. Effects of resveratrol and genistein on nuclear factor-ĸB, tumor necrosis factor-α and matrix metalloproteinase-9 in patients with chronic obstructive pulmonary disease. Molecular Medicine Reports 13 (5): 4266–4272.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dragone, T., A. Cianciulli, R. Calvello, C. Porro, T. Trotta, and M.A. Panaro. 2014. Resveratrol counteracts lipopolysaccharide mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway. Toxicology In Vitro 28 (6): 1126–1135.

    Article  CAS  PubMed  Google Scholar 

  11. Liu, X., J. Li, X. Peng, B. Lv, P. Wang, X. Zhao, and B. Yu. 2016. Geraniin inhibits LPS-induced THP-1 macrophages switching to M1 phenotype via SOCS1/NF-κB pathway. Inflammation 39 (4): 1421–1433.

    Article  CAS  PubMed  Google Scholar 

  12. Ortiz-Muñoz, G., J.L. Martin-Ventura, P. Hernandez-Vargas, B. Mallavia, V. Lopez-Parra, O. Lopez-Franco, B. Muñoz-Garcia, et al. 2009. Suppressors of cytokine signaling modulate JAK/STAT-mediated cell responses during atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 29 (4): 525–531.

    Article  PubMed  Google Scholar 

  13. Maine, G.N., X. Mao, C.M. Komarck, and E. Burstein. 2007. COMMD1 promotes the ubiquitination of NF-kappa B subunits through a cullin-containing ubiquitin ligase. The EMBO Journal 26 (2): 436–447.

    Article  CAS  PubMed  Google Scholar 

  14. Oh, J., S.H. Kim, S. Ahn, and C.E. Lee. 2012. Suppressors of cytokine signaling promote Fas-induced apoptosis through downregulation of NF-ĸB and mitochondrial Bfl-1 in leukemic T cells. Journal of Immunology 189 (12): 5561–5571.

    Article  CAS  Google Scholar 

  15. Schweitzer, K., and M. Naumann. 2015. CSN-associated USP48 confers stability to nuclear NF-ĸB/RelA by trimming K48-linked Ub-chains. Biochimica et Biophysica Acta 1853 (2): 453–469.

    Article  CAS  PubMed  Google Scholar 

  16. Du, F., F. Yu, Y. Wang, Y. Hui, K. Carnevale, M. Fu, H. Lu, et al. 2014. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 34 (4): 759–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, Y., Q. Pan, Y. Zhao, C. He, K. Bi, Y. Chen, B. Zhao, et al. 2015. MicroRNA-155 regulates ROS production, NO generation, apoptosis and multiple functions of human brain microvessel endothelial cells under physiological and pathological conditions. Journal of Cellular Biochemistry 116 (12): 2870–2881.

    Article  CAS  PubMed  Google Scholar 

  18. Nazari-Jahantigh, M., Y. Wei, H. Noels, S. Akhtar, Z. Zhou, R.R. Koenen, K. Heyll, et al. 2012. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. The Journal of Clinical Investigation 122 (11): 4190–4202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, X., N. Belkin, and M.W. Feinberg. 2013. Endothelial microRNAs and atherosclerosis. Current Atherosclerosis Reports 15 (12): 372.

    Article  PubMed  Google Scholar 

  20. Tan, Y., J. Yang, K. Xiang, Q. Tan, and Q. Guo. 2015. Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signaling pathway. Neurochemical Research 40 (3): 550–560.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, Y., L. Yang, X. Liang, and G. Zhu. 2015. MicroRNA-155 promotes atherosclerosis inflammation via targeting SOCS1. Cellular Physiology and Biochemistry 36 (4): 1371–1381.

    Article  CAS  PubMed  Google Scholar 

  22. Sandoval, M.J., P.H. Cutini, M.B. Rauschemberger, and V.L. Massheimer. 2010. The soyabean isoflavone genistein modulates endothelial cell behavior. British Journal of Nutrition 104 (2): 171–179.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, H.P., F.L. Zheng, J.H. Zhao, D.X. Guo, and X.L. Chen. 2013. Genistein inhibits ox-LDL-induced VCAM-1, ICAM-1 and MCP-1 expression of HUVECs through heme oxygenase-1. Archives of Medical Research 44 (1): 13–20.

    Article  PubMed  Google Scholar 

  24. Du, J., Y. Huang, H. Yan, Q. Zhang, M. Zhao, M. Zhu, J. Liu, et al. 2014. Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor ĸB (NF-ĸB) pathway. The Journal of Biological Chemistry 289 (14): 9741–9753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, C.S., A.H. Lin, T.C. Yang, K.L. Liu, H.W. Chen, and C.K. Lii. 2015. Shikonin inhibits oxidized LDL-induced monocyte adhesion by suppressing NF-ĸB activation via up-regulation of PI3K/Akt/Nrf2-dependent antioxidation in EA.hy926 endothelial cells. Biochemical Pharmacology 93 (3): 352–361.

    Article  CAS  PubMed  Google Scholar 

  26. Yurdagul, A. Jr., F.J. Sulzmaier, X.L. Chen, C.B. Pattillo, D.D. Schlaepfer, and A.W. Orr. 2016. Oxidized LDL induces FAK-dependent RSK signaling to drive NF-ĸB activation and VCAM-1 expression. Journal of Cell Science 129 (8): 1580–1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chung, M.H., D.H. Kim, H.K. Na, J.H. Kim, H.N. Kim, G. Haegeman, and Y.J. Surh. 2014. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutation Research 768: 74–83.

    Article  CAS  PubMed  Google Scholar 

  28. Han, S., H. Wu, W. Li, and P. Gao. 2015. Protective effects of genistein in homocysteine-induced endothelial cell inflammatory injury. Molecular and Cellular Biochemistry 403 (1–2): 43–49.

    Article  CAS  PubMed  Google Scholar 

  29. Collins, P.E., I. Mitxitorena, and R.J. Carmody. 2016. The ubiquitination of NF-κB subunits in the control of transcription. Cells 5(2): 23.

  30. Strebovsky, J., P. Walker, R. Lang, and A.H. Dalpke. 2011. Suppressor of cytokine signaling 1 (SOCS1) limits NF-kappaB signaling by decreasing p65 stability within the cell nucleus. The FASEB Journal 25 (3): 863–874.

    Article  CAS  PubMed  Google Scholar 

  31. Andrade, C.M., M.F. Sá, and M.R. Toloi. 2012. Effects of phytoestrogens derived from soy bean on expression of adhesion molecules on HUVEC. Climacteric 15 (2): 186–194.

    Article  PubMed  Google Scholar 

  32. Babu, P.V., H. Si, Z. Fu, W. Zhen, and D. Liu. 2012. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. The Journal of Nutrition 142 (4): 724–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jia, Z., P.V. Babu, H. Si, P. Nallasamy, H. Zhu, W. Zhen, H.P. Misra, et al. 2013. Genistein inhibits TNF-α-induced endothelial inflammation through the protein kinase pathway A and improves vascular inflammation in C57BL/6 mice. International Journal of Cardiology 168 (3): 2637–2645.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yi, L., C.Y. Chen, X. Jin, T. Zhang, Y. Zhou, Q.Y. Zhang, J.D. Zhu, et al. 2012. Differential suppression of intracellular reactive oxygen species-mediated signaling pathway in vascular endothelial cells by several subclasses of flavonoids. Biochimie 94 (9): 2035–2044.

    Article  CAS  PubMed  Google Scholar 

  35. Feinberg, M.W., and K.J. Moore. 2016. MicroRNA regulation of atherosclerosis. Circulation Research 118 (4): 703–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nishiguchi, T., T. Imanishi, and T. Akasaka. 2015. MicroRNAs and cardiovascular diseases. BioMed Research International 2015: 682857.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rao, R., P. Nagarkatti, and M. Nagarkatti. 2014. Staphylococcal enterotoxin B-induced microRNA-155 targets SOCS1 to promote acute inflammatory lung injury. Infection and Immunity 82 (7): 2971–2979.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li, X.C., F. Tian, and F. Wang. 2013. Rheumatoid arthritis-associated microRNA-155 targets SOCS1 and upregulates TNF-α and IL-1β in PBMCs. International Journal of Molecular Sciences 14 (12): 23910–23921.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pathak, S., A.R. Grillo, M. Scarpa, P. Brun, R. D’Incà, L. Nai, A. Banerjee, et al. 2015. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Experimental & Molecular Medicine 47: e164.

    Article  CAS  Google Scholar 

  40. Ma, C., Y. Wang, A. Shen, and W. Cai. 2017. Resveratrol upregulates SOCS1 production by lipopolysaccharide stimulated RAW264.7 macrophages by inhibiting miR-155. International Journal of Molecular Medicine 39 (1): 231–237.

    PubMed  Google Scholar 

  41. Pourgholi, F., M. Hajivalili, R. Razavi, S. Esmaeili, B. Baradaran, A.A. Movasaghpour, S. Sadreddini, et al. 2017. The role of M2000 as an anti-inflammatory agent in toll-like receptor 2/microRNA-155 pathway. Avicenna J Med Biotechnol 9 (1): 8–12.

    PubMed  PubMed Central  Google Scholar 

  42. Xu, H.F., X.Y. Fang, S.H. Zhu, X.H. Xu, Z.X. Zhang, Z.F. Wang, Z.Q. Zhao, et al. 2016. Glucocorticoid treatment inhibits intracerebral hemorrhage-induced inflammation by targeting the microRNA-155/SOCS-1 signaling pathway. Molecular Medicine Reports 14 (4): 3798–3804.

    CAS  PubMed  Google Scholar 

  43. Wen, Y., X. Zhang, L. Dong, J. Zhao, C. Zhang, and C. Zhu. 2015. Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Molecular Medicine 18 (21): 197–209.

    Google Scholar 

  44. Park, E.J., S.Y. Park, E.H. Joe, and I. Jou. 2003. 15d-PGJ2 and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. The Journal of Biological Chemistry 278 (17): 14747–14752.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, X., J. Wu, B. Ye, Q. Wang, X. Xie, and H. Shen. 2016. Protective effect of curcumin on TNBS-induced intestinal inflammation is mediated through the JAK/STAT pathway. BMC Complementary and Alternative Medicine 16 (1): 299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baig, M.S., S.V. Zaichick, M. Mao, A.L. de Abreu, F.R. Bakhshi, P.C. Hart, U. Saqib, et al. 2015. NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1. The Journal of Experimental Medicine 212 (10): 1725–1738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Filgueiras, L.R., J.O. Martins Jr., C.H. Serezani, V.L. Capelozzi, M.B. Montes, and S. Jancar. 2012. Sepsis-induced acute lung injury (ALI) is milder in diabetic rats and correlates with impaired NF-ĸB activation. PloS One 7 (9): e44987.

    Article  CAS  PubMed  Google Scholar 

  48. Serezani, C.H., C. Lewis, S. Jancar, and M. Peters-Golden. 2011. Leukotriene B4 amplifies NF-ĸB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88expression. The Journal of Clinical Investigation 121 (2): 671–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guimarães, M.R., F.R. Leite, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa Jr. 2013. Curcumin abrogates LPS-induced proinflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Archives of Oral Biology 58 (10): 1309–1317.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Choi, E.Y., S.H. Choe, J.Y. Hyeon, J.I. Choi, I.S. Choi, and S.J. Kim. 2015. Effect of caffeic acid phenethyl ester on Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages. Journal of Periodontal Research 50 (6): 737–747.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaping Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhao, Z., Pang, X. et al. Genistein Protects Against Ox-LDL-Induced Inflammation Through MicroRNA-155/SOCS1-Mediated Repression of NF-ĸB Signaling Pathway in HUVECs. Inflammation 40, 1450–1459 (2017). https://doi.org/10.1007/s10753-017-0588-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0588-3

KEY WORDS

Navigation