Skip to main content
Log in

Increased TMEM16A Involved in Alveolar Fluid Clearance After Lipopolysaccharide Stimulation

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Transmembrane protein 16A (TMEM16A) regulates a wide variety of cellular activities, including epithelial fluid secretion and maintenance of ion homeostasis. Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, is one of the major causes of acute lung injury (ALI). In this study, we investigated the effects of LPS on the expression of TMEM16A in LA795 cells and mouse lung tissue and the potential mechanism. Result: We detected the expression of TMEM16A in LA795 cells and mouse lung tissue by RT-PCR, Western blot, and RNA interference techniques. TMEM16A expression was significantly increased by LPS stimulation in LA795 cells and in mouse lung tissue. Moreover, the LPS-induced TMEM16A expression enhancement in lung tissue was much more prominent in the alveolar epithelial region than in bigger airway epithelial cells. The typical TMEM16A current was recorded, and LPS treatment significantly enhances the current amplitude in LA795 cells. TMEM16A shRNA or TMEM16A inhibitor (T16Ainh-A01) did not affect alveolar fluid clearance (AFC), while co-application of T16Ainh-A01 induced a stronger AFC inhibition than LPS alone. LPS notably and synchronously enhanced Akt phosphorylation (p-Akt) and TMEM16A expression in a time-dependent manner in LA795 cells. Taken together, our results suggest that TMEM16A maybe plays an important role in pathological conditions of LPS-induced ALI as a protective protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TMEM16A:

Transmembrane protein 16A

LPS:

Lipopolysaccharide

ALI:

Acute lung injury

AFC:

Alveolar fluid clearance

p-Akt:

Akt phosphorylation

References

  1. Otulakowski, G. 2006. Oxygen and glucocorticoids modulate alpha ENaC mRNA translation in fetal distal lung epithelium. American Journal of Respiratory Cell and Molecular Biology 34: 204–212.

    Article  CAS  PubMed  Google Scholar 

  2. Berthiaume, Y., and M.A. Matthay. 2007. Alveolar edema fluid clearance and acute lung injury. Respiratory Physiology & Neurobiology 159: 350–359.

    Article  CAS  Google Scholar 

  3. Ware, L.B., and M.A. Matthay. 2001. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 163: 1376–1383.

    Article  CAS  PubMed  Google Scholar 

  4. Caputo, A., E. Caci, L. Ferrera, N. Pedemonte, C. Barsanti, E. Sondo, U. Pfeffer, R. Ravazzolo, O. Zegarra-Moran, and L.J. Galietta. 2008. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322: 590–594.

    Article  CAS  PubMed  Google Scholar 

  5. Schroeder, B.C., T. Cheng, Y.N. Jan, and L.Y. Jan. 2008. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134: 1019–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, Y.D., H. Cho, J.Y. Koo, M.H. Tak, Y. Cho, W.S. Shim, S.P. Park, J. Lee, B. Lee, B.M. Kim, R. Raouf, Y.K. Shin, and U. Oh. 2008. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455: 1210–1215.

    Article  CAS  PubMed  Google Scholar 

  7. Ruffin, M., M. Voland, S. Marie, M. Bonora, E. Blanchard, S. Blouquit-Laye, E. Naline, P. Puyo, P. Le Rouzic, L. Guillot, H. Corvol, A. Clement, and O. Tabary. 2013. Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis. Biochimica et Biophysica Acta 1832: 2340–2351.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, W.C., S. Xiao, F. Huang, B.D. Harfe, Y.N. Jan, and L.Y. Jan. 2012. Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron 74: 179–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, B., J.E. Linley, X. Du, X. Zhang, L. Ooi, H. Zhang, and N. Gamper. 2010. The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl- channels. Journal of Clinical Investigation 120: 1240–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schreiber, R., I. Uliyakina, P. Kongsuphol, R. Warth, M. Mirza, J.R. Martins, and K. Kunzelmann. 2012. Expression and function of epithelial anoctamins. Journal of Biological Chemistry 285: 7838–7845.

    Article  Google Scholar 

  11. Huang, F., J.R. Rock, B.D. Harfe, T. Cheng, X. Huang, Y.N. Jan, and L.Y. Jan. 2009. Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proceedings of the National Academy of Sciences of the United States of America 106: 21413–21418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rock, J.R., W.K. O’Neal, S.E. Gabriel, S.H. Randell, B.D. Harfe, R.C. Boucher, and B.R. Grubb. 2009. Transmembrane protein 16A (TMEM16A) is a Ca2+-regulated Cl- secretory channel in mouse airways. Journal of Biological Chemistry 284: 14875–14880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sheridan, J.T., E.N. Worthington, K. Yu, S.E. Gabriel, H.C. Hartzell, and R. Tarran. 2011. Characterization of the oligomeric structure of the Ca(2+)-activated Cl- channel Ano1/TMEM16A. Journal of Biological Chemistry 286: 1381–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ousingsawat, J., J.R. Martins, R. Schreiber, J.R. Rock, B.D. Harfe, and K. Kunzelmann. 2009. Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. Journal of Biological Chemistry 284: 28698–28703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, F., H. Zhang, M. Wu, H. Yang, M. Kudo, C.J. Peters, P.G. Woodruff, O.D. Solberg, M.L. Donne, X. Huang, D. Sheppard, J.V. Fahy, P.J. Wolters, B.L. Hogan, W.E. Finkbeiner, M. Li, Y.N. Jan, L.Y. Jan, and J.R. Rock. 2012. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proceedings of the National Academy of Sciences of the United States of America 109: 16354–16359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jung, J., J.H. Nam, H.W. Park, U. Oh, J.H. Yoon, and M.G. Lee. 2013. Dynamic modulation of ANO1/TMEM16A HCO3(-) permeability by Ca2+/calmodulin. Proceedings of the National Academy of Sciences of the United States of America 110: 360–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Veit, G., F. Bossard, J. Goepp, A.S. Verkman, L.J. Galietta, J.W. Hanrahan, and G.L. Lukacs. 2012. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Molecular Biology of the Cell 23: 4188–4202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Forrest, A.S., T.C. Joyce, M.L. Huebner, R.J. Ayon, M. Wiwchar, J. Joyce, N. Freitas, A.J. Davis, L. Ye, D.D. Duan, C.A. Singer, M.L. Valencik, I.A. Greenwood, and N. Leblanc. 2012. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension. American Journal of Physiology. Cell Physiology 303: C1229–C1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hartzell, C., I. Putzier, and J. Arreola. 2005. Calcium-activated chloride channels. Annual Review of Physiology 67: 719–758.

    Article  CAS  PubMed  Google Scholar 

  20. Loewen, M.E., and G.W. Forsyth. 2005. Structure and function of CLCA proteins. Physiological Reviews 85: 1061–1092.

    Article  CAS  PubMed  Google Scholar 

  21. Y. Yang, Y. Cheng, Q.Q. Lian, L. Yang, W. Qi, D.R. Wu, X. Zheng, Y.J. Liu, W.J. Li, S.W. Jin, and F.G. Smith, Contribution of CFTR to alveolar fluid clearance by lipoxin A4 via PI3K/Akt pathway in LPS-induced acute lung injury. Mediators of Inflammation (2013) 862628.

  22. Mutlu, G.M., Y. Adir, M. Jameel, A.T. Akhmedov, L. Welch, V. Dumasius, F.J. Meng, J. Zabner, C. Koenig, E.R. Lewis, R. Balagani, G. Traver, J.I. Sznajder, and P. Factor. 2005. Interdependency of beta-adrenergic receptors and CFTR in regulation of alveolar active Na+ transport. Circulation Research 96: 999–1005.

    Article  CAS  PubMed  Google Scholar 

  23. Factor, P., G.M. Mutlu, L. Chen, J. Mohameed, A.T. Akhmedov, F.J. Meng, T. Jilling, E.R. Lewis, M.D. Johnson, A. Xu, D. Kass, J.M. Martino, A. Bellmeyer, J.S. Albazi, C. Emala, H.T. Lee, L.G. Dobbs, and S. Matalon. 2007. Adenosine regulation of alveolar fluid clearance. Proceedings of the National Academy of Sciences of the United States of America 104: 4083–4088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suda, K., M. Tsuruta, J. Eom, C. Or, T. Mui, J.E. Jaw, Y. Li, N. Bai, J. Kim, J. Man, D. Ngan, J. Lee, S. Hansen, S.W. Lee, S. Tam, S.P. Man, S. Van Eeden, and D.D. Sin. 2011. Acute lung injury induces cardiovascular dysfunction: effects of IL-6 and budesonide/formoterol. American Journal of Respiratory Cell and Molecular Biology 45: 510–516.

    Article  CAS  PubMed  Google Scholar 

  25. Buyck JM1, Verriere V, Benmahdi R, Higgins G, Guery B, Matran R, Harvey BJ, Faure K, Urbach V, P. aeruginosa LPS stimulates calcium signaling and chloride secretion via CFTR in human bronchial epithelial cells. Journal of Cystic Fibrosis 12 (2013)60-7.

  26. Wilson, A.A., L.W. Kwok, E.L. Porter, J.G. Payne, G.S. McElroy, S.J. Ohle, S.R. Greenhill, M.T. Blahna, K. Yamamoto, J.C. Jean, J.P. Mizgerd, and D.N. Kotton. 2013. Lentiviral delivery of RNAi for in vivo lineage-specific modulation of gene expression in mouse lung macrophages. Molecular Therapy 21: 825–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Namkung, W., P.W. Phuan, and A.S. Verkman. 2011. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. Journal of Biological Chemistry 286: 2365–2374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis, A.J., J. Shi, H.A. Pritchard, P.S. Chadha, N. Leblanc, G. Vasilikostas, Z. Yao, A.S. Verkman, A.P. Albert, and I.A. Greenwood. 2013. Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh) -A01. British Journal of Pharmacology 168: 773–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun, H., Y. Xia, O. Paudel, X.R. Yang, and J.S. Sham. 2012. Chronic hypoxia-induced upregulation of Ca2+-activated Cl- channel in pulmonary arterial myocytes: a mechanism contributing to enhanced vasoreactivity. Journal of Physiology 590: 3507–3521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bastarache, J.A., T. Ong, M.A. Matthay, and L.B. Ware. 2011. Alveolar fluid clearance is faster in women with acute lung injury compared to men. Journal of Critical Care 26: 249–256.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Berger, G., J. Guetta, G. Klorin, R. Badarneh, E. Braun, V. Brod, N.A. Saleh, A. Katz, H. Bitterman, and Z.S. Azzam. 2011. Sepsis impairs alveolar epithelial function by downregulating Na-K-ATPase pump. American Journal of Physiology - Lung Cellular and Molecular Physiology 301: L23–L30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank technicians Bin Li M.D. Ph.D. and Ping Xue M.D. for their technical assistance and Prof. Yi Zhang M.D. Ph.D. and Prof. Hailin Zhang M.D. Ph.D. for providing valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xixin Yan.

Ethics declarations

The use of wild-type C57BL/6 mice was approved by the Animal Care and Ethics Committee of Hebei Medical University.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Grants

This work was supported by the National Nature Science Foundation of China (grant no. 81170063) and the Nature Science Foundation of Hebei Province, China (grant no H2012206110).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yan, X., Li, R. et al. Increased TMEM16A Involved in Alveolar Fluid Clearance After Lipopolysaccharide Stimulation. Inflammation 39, 881–890 (2016). https://doi.org/10.1007/s10753-016-0320-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0320-8

KEY WORDS

Navigation