Skip to main content

Advertisement

Log in

Involvement of Kallikrein-Kinin System on Cardiopulmonary Alterations and Inflammatory Response Induced by Purified Aah I Toxin from Scorpion Venom

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Bradykinins are released from kininogen by kallikrein. They increase capillary lung permeability after their binding to β1 and especially β2 receptors before being metabolized by kininase enzyme. This study was performed to evaluate cardiopulmonary damages and inflammatory response on injected rats with Aah I toxin of scorpion venom and the involvement of Kallikrein-Kinin system in this pathogenesis. Obtained results revealed that Aah I toxin induces inflammatory cell infiltration accompanied by cellular peroxidase activities, a release of cytokine levels, pulmonary and myocardial damage, with altered metabolic activities and imbalanced redox status. Administration of aprotinin (bradykinin inhibitor) and especially icatibant (bradykinin β2 receptor antagonist) seemed to be able to protect animals against the toxicity of Aah I; nevertheless, the use of captopril (kininase II inhibitor) reduced partially some cardiac disorders. These findings indicate that the kallikrein-kinin system may contribute to the physiopathological effect and lung edema formation induced by toxin, which suggests a potential use of drugs with significant anti-kinin properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Aah:

Androctonus australis hector

Aah I:

Neurotoxins purified from Aah venom

ACE:

Angiotensin-converting enzyme

ACEI:

Angiotensin-converting enzyme inhibitor

Apro:

Aprotinine

Cap:

Captopril

Icati:

lcatibant

IL-1β:

Cytokines: Interleukin-1β

IL-6:

Interleukin-6

I-10:

Interleukin-10

MDA:

Malondialdehyde

References

  1. Ismail, M. 1995. The scorpion envenoming syndrome. Toxicon 33: 825–858.

    Article  CAS  PubMed  Google Scholar 

  2. Rochat, H., P. Bernard, and F. Couraud. 1979. Scorpion toxins: chemistry and mode of action. Advances in Cytopharmacology 3: 325–334.

    CAS  PubMed  Google Scholar 

  3. Couraud, F., E. Jover, J.M. Dubois, and H. Rochat. 1982. Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20: 9–16.

    Article  CAS  PubMed  Google Scholar 

  4. Devaux, C., B. Jouirou, Krifi M. Naceur, O. Clot-Faybesse, M. El Ayeb, and H. Rochat. 2004. Quantitative variability in the biodistribution and in toxinokinetic studies of the three main alpha toxins from the Androctonus australis hector scorpion venom. Toxicon 43: 661–669.

    Article  CAS  PubMed  Google Scholar 

  5. Amaral, C.F., J.A. Lopes, R.A. Magalhaes, and N.A. de Rezende. 1991. Electrocardiographic, enzymatic and echocardiographic evidence of myocardial damage after Tityus serrulatus scorpion poisoning. American Journal of Cardiology 67: 655–657.

    Article  CAS  PubMed  Google Scholar 

  6. Rahav, G., and A.T. Weiss. 1990. Scorpion sting-induced pulmonary edema. Scintigraphic evidence of cardiac dysfunction. Chest 97: 1478–1480.

    Article  CAS  PubMed  Google Scholar 

  7. Freire-Maia, L., and I.M. de Matos. 1993. Heparin or a PAF antagonist (BN-52021) prevents the acute pulmonary edema induced by Tityus serrulatus scorpion venom in the rat. Toxicon 31: 1207–1210.

    Article  CAS  PubMed  Google Scholar 

  8. Mathur, A., G. Verma, R.S. Gehlot, and J.S. Ujjwal. 1993. Non-cardiac pulmonary oedema in scorpion bite. Journal of the Association of Physicians of India 41: 398.

    CAS  PubMed  Google Scholar 

  9. Magalhaes, M.M., M.E. Pereira, C.F. Amaral, N.A. Rezende, D. Campolina, F. Bucaretchi, et al. 1999. Serum levels of cytokines in patients envenomed by Tityus serrulatus scorpion sting. Toxicon 37: 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  10. Meki, A.R., and Z.M. Mohey El-Dean. 1998. Serum interleukin-1beta, interleukin-6, nitric oxide and alpha1-antitrypsin in scorpion envenomed children. Toxicon 36: 1851–1859.

    Article  CAS  PubMed  Google Scholar 

  11. Adi-Bessalem, S., A. Mendil, D. Hammoudi-Triki, and F. Laraba-Djebari. 2012. Lung immunoreactivity and airway inflammation: their assessment after scorpion envenomation. Inflammation 35: 501–508.

    Article  CAS  PubMed  Google Scholar 

  12. Raouraoua-Boukari, R., S. Sami-Merah, D. Hammoudi-Triki, M.F. Martin-Eauclaire, and F. Laraba-Djebari. 2012. Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: biomarker interactions. Neuroimmunomodulation 19: 103–110.

    Article  CAS  PubMed  Google Scholar 

  13. Fukuhara, Y.D., R. Dellalibera-Joviliano, F.Q. Cunha, M.L. Reis, and E.A. Donadi. 2004. The kinin system in the envenomation caused by the Tityus serrulatus scorpion sting. Toxicology and Applied Pharmacology 196: 390–395.

    Article  CAS  PubMed  Google Scholar 

  14. Meki, A.R.M.A., and H.E. Omar. 1997. A bradykinin potentiating fraction isolated from the venom of Egyptian scorpion Buthus occitanus induced prostaglandin biosynthesis in female guinea pigs. Comparative Biochemistry and Physiology C-Pharmacology Toxicology and Endocrinology 116: 183–189.

    Article  Google Scholar 

  15. Toll, L., and R.G. Almquist. 1986. Inhibition of [H-3] captopril binding by peptide analogue angiotensin converting enzyme-inhibitors. Biochemical and Biophysical Research Communications 135: 770–777.

    Article  CAS  PubMed  Google Scholar 

  16. Bhoola, K.D., C.D. Figueroa, and K. Worthy. 1992. Bioregulation of Kinins - Kallikreins, Kininogens, and Kininases. Pharmacological Reviews 44: 1–80.

    CAS  PubMed  Google Scholar 

  17. Martin, M.F., and H. Rochat. 1986. Large scale purification of toxins from the venom of the scorpion Androctonus australis Hector. Toxicon 24: 1131–1139.

    Article  CAS  PubMed  Google Scholar 

  18. Deshpande, S.B., S. Bagchi, O.P. Rai, and N.C. Aryya. 1999. Pulmonary oedema produced by scorpion venom augments a phenyldiguanide-induced reflex response in anaesthetized rats. Journal of Physiology (London) 521: 537–544.

    Article  CAS  Google Scholar 

  19. VanOosterhout, A.J.M., I. vanArk, G. Hofman, H.J. VanderLinde, D. Fattah, and F.P. Nijkamp. 1996. Role of interleukin-5 and substance P in development of airway hyperreactivity to histamine in guinea-pigs. European Respiratory Journal 9: 493–499.

    Article  CAS  Google Scholar 

  20. Ergun, Y., E.B. Kurutas, B. Ozdil, R. Gunesacar, and Y. Ergun. 2011. Evaluation of nitrite/nitrate levels in relation to oxidative stress parameters in liver cirrhosis. Clinics and Research in Hepatology and Gastroenterology 35: 303–308.

    Article  CAS  PubMed  Google Scholar 

  21. Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351–358.

    Article  CAS  PubMed  Google Scholar 

  22. Aebi, H. 1984. Catalase Invitro. Methods in Enzymology 105: 121–126.

    Article  CAS  PubMed  Google Scholar 

  23. Adi-Bessalem, S., D. Hammoudi-Triki, and F. Laraba-Djebari. 2008. Pathophysiological effects of Androctonus australis hector scorpion venom: tissue damages and inflammatory response. Experimental and Toxicologic Pathology 60: 373–380.

    Article  PubMed  Google Scholar 

  24. Kimura, H., T. Sawada, S. Oshima, K. Kozawa, T. Ishioka, and M. Kato. 2005. Toxicity and roles of reactive oxygen species. Current Drug Targets. Inflammation and Allergy 4: 489–495.

    Article  CAS  PubMed  Google Scholar 

  25. Lardinois, O.M., M.M. Mestdagh, and P.G. Rouxhet. 1996. Reversible inhibition and irreversible inactivation of catalase in presence of hydrogen peroxide. Biochimica et Biophysica Acta 1295: 222–238.

    Article  PubMed  Google Scholar 

  26. Kanoo, S., and S.B. Deshpande. 2008. Involvement of phospholipase A2 pathway for the Indian red scorpion venom-induced augmentation of cardiopulmonary reflexes elicited by phenyldiguanide. Neuroscience Letters 440: 242–245.

    Article  CAS  PubMed  Google Scholar 

  27. Kanoo, S., A.B. Alex, A.K. Tiwari, and S.B. Deshpande. 2009. B(2) kinin receptors mediate the Indian red scorpion venom-induced augmentation of visceral reflexes via the nitric oxide cyclic guanosine monophosphate pathway. Acta Physiologica (Oxford, England) 196: 365–373.

    Article  CAS  Google Scholar 

  28. Saidi, H., S. Adi-Bessalem, D. Hammoudi-Triki, and F. Laraba-Djebari. 2013. Effects of atropine and propranolol on lung inflammation in experimental envenomation: comparison of two buthidae venoms. Journal of Venomous Animals and Toxins Including Tropical Diseases 19: 8.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Abroug, F., R. Boujdaria, M. Belghith, S. Nouira, and S. Bouchoucha. 1991. Cardiac dysfunction and pulmonary edema following scorpion envenomation. Chest 100: 1057–1059.

    Article  CAS  PubMed  Google Scholar 

  30. Guillen, I., M. Blanes, M.J. Gomez-Lechon, and J.V. Castell. 1995. Cytokine signaling during myocardial infarction: sequential appearance of IL-1 beta and IL-6. American Journal of Physiology 269: R229–R235.

    CAS  PubMed  Google Scholar 

  31. Faccioli, L.H., G.E. Souza, F.Q. Cunha, S. Poole, and S.H. Ferreira. 1990. Recombinant interleukin-1 and tumor necrosis factor induce neutrophil migration “in vivo” by indirect mechanisms. Agents and Actions 30: 344–349.

    Article  CAS  PubMed  Google Scholar 

  32. Baumann, H., and J. Gauldie. 1994. The acute phase response. Immunology Today 15: 74–80.

    Article  CAS  PubMed  Google Scholar 

  33. Fukuhara, Y.D., M.L. Reis, R. Dellalibera-Joviliano, F.Q. Cunha, and E.A. Donadi. 2003. Increased plasma levels of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha in patients moderately or severely envenomed by Tityus serrulatus scorpion sting. Toxicon 41: 49–55.

    Article  CAS  PubMed  Google Scholar 

  34. Abraham, E. 2000. Coagulation abnormalities in acute lung injury and sepsis. American Journal of Respiratory Cell and Molecular Biology 22: 401–404.

    Article  CAS  PubMed  Google Scholar 

  35. Moraes, T.J., C.W. Chow, and G.P. Downey. 2003. Proteases and lung injury. Critical Care Medicine 31: S189–S194.

    Article  CAS  PubMed  Google Scholar 

  36. Bekheet, S.H., E.A. Awadalla, M.M. Salman, and M.K. Hassan. 2013. Prevention of hepatic and renal toxicity with bradykinin potentiating factor (BPF) isolated from Egyptian scorpion venom (Buthus occitanus) in gentamicin treated rats. Tissue and Cell 45: 89–94.

    Article  CAS  PubMed  Google Scholar 

  37. Sandhya, P., and P. Varalakshmi. 1997. Effect of lipoic acid administration on gentamicin-induced lipid peroxidation in rats. Journal of Applied Toxicology 17: 405–408.

    Article  CAS  PubMed  Google Scholar 

  38. Lamraoui, A., S. Adi-Bessalem, and F. Laraba-Djebari. 2014. Modulation of tissue inflammatory response by histamine receptors in scorpion envenomation pathogenesis: involvement of H4 receptor. Inflammation 37: 1689–1704.

    Article  CAS  PubMed  Google Scholar 

  39. Bagchi, S., and S.B. Deshpande. 1998. Indian red scorpion (Buthus tamulus) venom-induced augmentation of cardiac reflexes is mediated through the mechanisms involving kinins in urethane anaesthetized rats. Toxicon 36: 309–320.

    Article  CAS  PubMed  Google Scholar 

  40. Ismail, M., A.J. Fatani, and T.T. Dabees. 1992. Experimental treatment protocols for scorpion envenomation: a review of common therapies and an effect of kallikrein-kinin inhibitors. Toxicon 30: 1257–1279.

    Article  CAS  PubMed  Google Scholar 

  41. Krishnan, A., R.V. Sonawane, and D.R. Karnad. 2007. Captopril in the treatment of cardiovascular manifestations of Indian red scorpion (Mesobuthus tamulus concanesis Pocock) envenomation. Journal of the Association of Physicians of India 55: 22–26.

    CAS  PubMed  Google Scholar 

  42. Linardi, A., S.K. Costa, G.R. da Silva, and E. Antunes. 2000. Involvement of kinins, mast cells and sensory neurons in the plasma exudation and paw oedema induced by staphylococcal enterotoxin B in the mouse. European Journal of Pharmacology 399: 235–242.

    Article  CAS  PubMed  Google Scholar 

  43. Dutta, A., and S.B. Deshpande. 2011. Indian red scorpion venom-induced augmentation of cardio-respiratory reflexes and pulmonary edema involve the release of histamine. Toxicon 57: 193–198.

    Article  CAS  PubMed  Google Scholar 

  44. Buckley, I.K., and G.B. Ryan. 1969. Increased vascular permeability. The effect of histamine and serotonin on rat mesenteric blood vessels in vivo. American Journal of Pathology 55: 329–347.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Wachtfogel, Y.T., U. Kucich, C.E. Hack, P. Gluszko, S. Niewiarowski, R.W. Colman, et al. 1993. Aprotinin inhibits the contact, neutrophil, and platelet activation systems during simulated extracorporeal perfusion. Journal of Thoracic and Cardiovascular Surgery 106: 1–9. discussion 9-10.

    CAS  PubMed  Google Scholar 

  46. Asimakopoulos, G., K.M. Taylor, D.O. Haskard, and R.C. Landis. 2000. Inhibition of neutrophil L-selectin shedding: a potential anti-inflammatory effect of aprotinin. Perfusion 15: 495–499.

    Article  CAS  PubMed  Google Scholar 

  47. Rhaleb, N.E., N. Rouissi, D. Jukic, D. Regoli, S. Henke, G. Breipohl, et al. 1992. Pharmacological characterization of a new highly potent B2 receptor antagonist (HOE 140: D-Arg-[Hyp3, Thi5, D-Tic7, Qic8] bradykinin). European Journal of Pharmacology 210: 115–120.

    Article  CAS  PubMed  Google Scholar 

  48. Liebmann, C., S. Nawrath, B. Ludwig, and I. Paegelow. 1993. Pharmacological and molecular actions of the bradykinin B2 receptor antagonist, Hoe 140, in the rat uterus. European Journal of Pharmacology 235: 183–188.

    Article  CAS  PubMed  Google Scholar 

  49. Freire-Maia, L., H.O. Almeida, J.R. Cunha-Melo, A.D. Azevedo, and J. Barroso. 1978. Mechanism of the pulmonary edema induced by intravenous injection of scorpion toxin in the rat. Agents and Actions 8: 113–118.

    Article  CAS  PubMed  Google Scholar 

  50. Bockmann, S., and I. Paegelow. 2000. Kinins and kinin receptors: importance for the activation of leukocytes. Journal of Leukocyte Biology 68: 587–592.

    CAS  PubMed  Google Scholar 

  51. Blaukat, A. 2003. Structure and signalling pathways of kinin receptors. Andrologia 35: 17–23.

    Article  CAS  PubMed  Google Scholar 

  52. Ferreira, S.H., and M. Rocha et Silva. 1965. Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) from Bothrops jararaca venom. Experientia 21: 347–349.

    Article  CAS  PubMed  Google Scholar 

  53. Stewart, J.M., S.H. Ferreira, and L.J. Greene. 1971. Bradykinin potentiating peptide PCA-Lys-Trp-Ala-Pro. An inhibitor of the pulmonary inactivation of bradykinin and conversion of angiotensin I to II. Biochemical Pharmacology 20: 1557–1567.

    Article  CAS  PubMed  Google Scholar 

  54. Cushman, D.W., H.S. Cheung, E.F. Sabo, B. Rubin, and M.A. Ondetti. 1979. Development of specific inhibitors of angiotensin I converting enzyme (kininase II). Federation Proceedings 38: 2778–2782.

    CAS  PubMed  Google Scholar 

  55. Cushman, D.W., and M.A. Ondetti. 1980. Inhibitors of angiotensin-converting enzyme for treatment of hypertension. Biochemical Pharmacology 29: 1871–1877.

    Article  CAS  PubMed  Google Scholar 

  56. Erdos, E.G. 1975. Angiotensin I converting enzyme. Circulation Research 36: 247–255.

    Article  CAS  PubMed  Google Scholar 

  57. Togo, J., R.M. Burch, C.J. DeHaas, J.R. Connor, and L.R. Steranka. 1989. D-Phe7-substituted peptide bradykinin antagonists are not substrates for kininase II. Peptides 10: 109–112.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Laraba-Djebari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medjadba, W., Martin-Eauclaire, MF. & Laraba-Djebari, F. Involvement of Kallikrein-Kinin System on Cardiopulmonary Alterations and Inflammatory Response Induced by Purified Aah I Toxin from Scorpion Venom. Inflammation 39, 290–302 (2016). https://doi.org/10.1007/s10753-015-0249-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0249-3

KEY WORDS

Navigation