Skip to main content

Advertisement

Log in

Endotoxin Tolerance Induced by Lipopolysaccharides Derived from Porphyromonas gingivalis and Escherichia coli: Alternations in Toll-Like Receptor 2 and 4 Signaling Pathway

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Periodontitis is a chronic inflammatory disease induced by bacteria. Exposure of the host to periodontal pathogens and their virulence factors induces a hyporesponsive state to subsequent challenge, which is termed endotoxin tolerance. In this experiment, we studied the cytokine production in THP-1 cells upon single or repeated Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) or Escherichia coli (E. coli) LPS stimulation by ELISA. In addition, the protein expression profiles of Toll-like receptor 2 (TLR2), TLR4, IL-1 receptor-associated kinase 4 (IRAK4) and IRAK-M and the gene expression changes of Toll-interacting protein (Tollip) and suppressor of cytokine-signaling-1 (SOCS1) were explored to identify possible mechanisms for changes in cytokine secretion. After repeated stimulation with P. gingivalis LPS or E. coli LPS, secretions of TNF-α and IL-1β were decreased significantly compared with those following single challenge, while the levels of IL-10 were increased (p < 0.05). Only comparable levels of IL-8 were confirmed in P. gingivalis LPS-tolerized cells (p > 0.05). In addition, severe downregulation of TLR2 was detected in THP-1 cells retreated with P. gingivalis LPS, and the reduction of TLR4 expression was observed in cells restimulated with E. coli LPS (p < 0.05). Precondition with P. gingivalis LPS or E. coli LPS also led to an enhancement of IRAK-M and SOCS1, while maintaining the expressions of IRAK4 and Tollip. This pattern of cytokine production indicates the different effects of endotoxin tolerance triggered by P. gingivalis LPS and E. coli LPS, which might contribute to limiting inflammatory damage. Moreover, TLR2, TLR4, IRAK-M, and SOCS1 might play important roles in developing tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oliver, R.C., L.J. Brown, and H. Loe. 1998. Periodontal diseases in the United States population. Journal of Periodontology 69(2): 269–278.

    Article  CAS  Google Scholar 

  2. Komiya Ito, A., K. Ishihara, S. Tomita, T. Kato, and S. Yamada. 2010. Investigation of subgingival profile of periodontopathic bacteria using polymerase chain reaction. The Bulletin of Tokyo Dental College 51(3): 139–144.

    Article  Google Scholar 

  3. Sun, Y., R. Shu, C.L. Li, and M.Z. Zhang. 2010. Gram-negative periodontal bacteria induce the activation of toll-like receptors 2 and 4, and cytokine production in human periodontal ligament cells. Journal of Periodontology 81(10): 1488–1496.

    Article  CAS  Google Scholar 

  4. Garlet, G.P. 2010. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. Journal of Dental Research 89(12): 1349–1363.

    Article  CAS  Google Scholar 

  5. Kopanakis, K., I.M. Tzepi, A. Pistiki, D.P. Carrer, M.G. Netea, M. Georgitsi, et al. 2013. Pre-treatment with low-dose endotoxin prolongs survival from experimental lethal endotoxic shock: benefit for lethal peritonitis by Escherichia coli. Cytokine 62(3): 382–388.

    Article  CAS  Google Scholar 

  6. Ruud, T.E., Y. Gundersen, J.E. Wang, S.J. Foster, C. Thiemermann, and A.O. Aasen. 2007. Activation of cytokine synthesis by systemic infusions of lipopolysaccharide and peptidoglycan in a porcine model in vivo and in vitro. Surgical Infections 8(5): 495–503.

    Article  Google Scholar 

  7. Broad, A., D.E. Jones, and J.A. Kirby. 2006. Toll-like receptor (TLR) response tolerance: a key physiological “damage limitation” effect and an important potential opportunity for therapy. Current Medicinal Chemistry 13(21): 2487–2502.

    Article  CAS  Google Scholar 

  8. Medzhitov, R., P. Preston-Hurlburt, and C.A. Janeway Jr. 1997. A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature 388(6640): 394–397.

    Article  CAS  Google Scholar 

  9. Tateishi, F., K. Hasegawa-Nakamura, T. Nakamura, Y. Oogai, H. Komatsuzawa, K. Kawamata, et al. 2012. Detection of Fusobacterium nucleatum in chorionic tissues of high-risk pregnant women. Journal of Clinical Periodontology 39(5): 417–424.

    Article  CAS  Google Scholar 

  10. Wara-Aswapati, N., A. Chayasadom, R. Surarit, W. Pitiphat, J.A. Boch, T. Nagasawa, et al. 2013. Induction of toll-like receptor expression by Porphyromonas gingivalis. Journal of Periodontology 84(7): 1010–1018.

    Article  CAS  Google Scholar 

  11. Brown, J., H. Wang, G.N. Hajishengallis, and M. Martin. 2011. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. Journal of Dental Research 90(4): 417–427.

    Article  CAS  Google Scholar 

  12. Gottipati, S., N.L. Rao, and W.P. Fung-Leung. 2008. IRAK1: a critical signaling mediator of innate immunity. Cellular Signalling 20(2): 269–276.

    Article  CAS  Google Scholar 

  13. Ankem, G., S. Mitra, F. Sun, A.C. Moreno, B. Chutvirasakul, H.F. Azurmendi, et al. 2011. The C2 domain of tollip, a toll-like receptor signalling regulator, exhibits broad preference for phosphoinositides. Biochemical Journal 435(3): 597–608.

    Article  CAS  Google Scholar 

  14. Liu, Z.J., X.L. Liu, J. Zhao, Y.J. Shi, L.N. Yan, and X.F. Chen. 2008. The Effects of SOCS-1 on liver endotoxin tolerance development induced by a low dose of lipopolysaccharide are related to dampen NF-kappaB-mediated pathway. Digestive and Liver Disease 40(7): 568–577.

    Article  CAS  Google Scholar 

  15. Liu, Q.Y., Y.M. Yao, S.W. Zhang, Y.H. Yan, and X. Wu. 2011. Naturally Existing CD11c (low) CD45RB (high) dendritic cells protect mice from acute severe inflammatory response induced by thermal injury. Immunobiology 216(1–2): 47–53.

    Article  CAS  Google Scholar 

  16. Park, S.Y., J. da Park, Y.H. Kim, Y. Kim, Y.W. Choi, and S.J. Lee. 2011. Schisandra chinensis α-iso-cubebenol induces heme oxygenase-1 expression through PI3K/Akt and Nrf2 signaling and has anti-inflammatory activity in Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages. International Immunopharmacology 11(11): 1907–1915.

    Article  CAS  Google Scholar 

  17. Haffajee, A.D., and S.S. Socransky. 1994. Microbial etiological agents of destructive periodontal diseases. Periodontology 2000 2000(5): 78–111.

    Article  Google Scholar 

  18. Chiang, C.Y., E. Fu, E.C. Shen, and H.C. Chiu. 2003. Effects of CD14 receptors on tissue reactions induced by local injection of two gram-negative bacterial lipopolysaccharides. Journal of Periodontal Research 38(1): 36–43.

    Article  CAS  Google Scholar 

  19. Posch, G., O. Andrukhov, E. Vinogradov, B. Lindner, P. Messner, O. Holst, et al. 2013. Structure and immunogenicity of the rough-type lipopolysaccharide from the periodontal pathogen Tannerella forsythia. Clinical and Vaccine Immunology 20(6): 945–953.

    Article  CAS  Google Scholar 

  20. Choi, S., J.E. Baik, J.H. Jeon, K. Cho, D.G. Seo, K. Ky, et al. 2011. Identification of Porphyromonas gingivalis lipopolysaccharide-binding proteins in human saliva. Molecular Immunology 48(15–16): 2207–2213.

    Article  CAS  Google Scholar 

  21. Yoshimura, A., Y. Hara, T. Kaneko, and I. Kato. 1997. Secretion of IL-1 Beta, TNF-Alpha, IL-8 and IL-1ra by human polymorphonuclear leukocytes in response to lipopolysaccharides from periodontopathic bacteria. Journal of Periodontal Research 32(3): 279–286.

    Article  CAS  Google Scholar 

  22. Gutiérrez-Venegas, G., P. Kawasaki-Cárdenas, S.R. Cruz-Arroyo, M. Pérez-Garzón, and S. Maldonado-Frías. 2006. Actinobacillus Actinomycetemcomitans lipopolysaccharide stimulates the phosphorylation of p44 and p42 MAP kinases through CD14 and TLR-4 receptor activation in human gingival fibroblasts. Life Sciences 78(22): 2577–2583.

    Article  Google Scholar 

  23. Mathison, J.C., G.D. Virca, E. Wolfson, P.S. Tobias, K. Glaser, and R.J. Ulevitch. 1990. Adaptation to bacterial lipopolysaccharide controls lipopolysaccharide-induced tumor necrosis factor production in rabbit macrophages. Journal of Clinical Investigation 85(4): 1108–1118.

    Article  CAS  Google Scholar 

  24. Zingarelli, B., H. Fan, S. Ashton, G. Piraino, P. Mangeshkar, and J.A. Cook. 2008. Peroxisome proliferator-activated receptor gamma is not necessary for the development of LPS-induced tolerance in macrophages. Immunology 124(1): 51–77.

    Article  CAS  Google Scholar 

  25. Zhu, M.F., J. Zhang, J.M. Qu, H.J. Zhang, S.C. Zhou, S.F. Dong, et al. 2010. Up-regulation of growth factor independence 1 in endotoxin tolerant macrophages with low secretion of TNF-Alpha and IL-6. Inflammation Research 59(10): 855–860.

    Article  CAS  Google Scholar 

  26. Melo, E.S., D.F. Barbeiro, R. Gorjão, E.C. Rios, D. Vasconcelos, I.T. Velasco, et al. 2010. Gene expression reprogramming protects macrophage from septic-induced cell death. Molecular Immunology 47(16): 2587–2593.

    Article  CAS  Google Scholar 

  27. Zaric, S.S., W.A. Coulter, C.E. Shelburne, C.R. Fulton, M.S. Zaric, A. Scott, et al. 2011. Altered toll-like receptor 2-mediated endotoxin tolerance is related to diminished interferon beta production. Journal of Biological Chemistry 286(34): 29492–29500.

    Article  CAS  Google Scholar 

  28. Li, C.H., J.H. Wang, and H.P. Redmond. 2006. Bacterial lipoprotein-induced self-tolerance and cross-tolerance to LPS are associated with reduced IRAK-1 expression and MyD88-IRAK complex formation. Journal of Leukocyte Biology 79(4): 867–875.

    Article  CAS  Google Scholar 

  29. Savidge, T.C., P.G. Newman, W.H. Pan, M.Q. Weng, H.N. Shi, M.C. Ba, et al. 2006. Lipopolysaccharide-induced human enterocyte tolerance to cytokine-mediated interleukin-8 production may occur independently of TLR-4/MD-2 signaling. Pediatric Research 59(1): 89–95.

    Article  CAS  Google Scholar 

  30. Chen, L.Y., B.L. Zuraw, M. Zhao, F.T. Liu, S. Huang, and Z.K. Pan. 2003. Involvement of protein tyrosine kinase in toll-like receptor 4-mediated NF-kappa B activation in human peripheral blood monocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology 284(4): L607–L613.

    Article  CAS  Google Scholar 

  31. Medvedev, A.E., W. Piao, J. Shoenfelt, S.H. Rhee, H. Chen, S. Basu, et al. 2006. Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. Journal of Biological Chemistry 282(22): 16042–16053.

    Article  Google Scholar 

  32. Arbibe, L., J.P. Mira, N. Teusch, L. Kline, M. Guha, N. Mackman, et al. 2000. Toll-like receptor 2-mediated NF-Kappa B activation requires a Rac1-dependent pathway. Nature Immunology 1(6): 533–540.

    Article  CAS  Google Scholar 

  33. Xiong, Y., F. Qiu, W. Piao, C. Song, L.M. Wahl, and A.E. Medvedev. 2011. Endotoxin tolerance impairs IL-1 receptor-associated kinase (IRAK) 4 and TGF-beta-activated kinase 1 activation, K63-linked polyubiquitination and assembly of IRAK1, TNF receptor-associated factor 6, and Ikappa B kinase gamma and increases A20 expression. Journal of Biological Chemistry 286(10): 7905–7916.

    Article  CAS  Google Scholar 

  34. Harada, K., K. Isse, Y. Sato, S. Ozaki, and Y. Nakanuma. 2006. Endotoxin tolerance in human intrahepatic biliary epithelial cells is induced by upregulation of IRAK-M. Liver International 26(8): 935–942.

    Article  CAS  Google Scholar 

  35. Bulut, Y., E. Faure, L. Thomas, O. Equils, and M. Arditi. 2001. Cooperation of toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of toll-interacting protein and IL-1 receptor signaling molecules in toll-like receptor 2 signaling. Journal of Immunology 167(2): 987–994.

    Article  CAS  Google Scholar 

  36. Dimitriou, I.D., L. Clemenza, A.J. Scotter, G. Chen, F.M. Guerra, and R. Rottapel. 2008. Putting out the fire: coordinated suppression of the innate and adaptive immune systems by SOCS1 and SOCS3 proteins. Immunological Reviews 224: 265–283.

    Article  CAS  Google Scholar 

  37. Alexander, W.S., and D.J. Hilton. 2004. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annual Review of Immunology 22: 503–529.

    Article  CAS  Google Scholar 

  38. Mun, H.S., F. Aosai, K. Norose, L.X. Piao, H. Fang, S. Akira, et al. 2005. Toll-like receptor 4 mediates tolerance in macrophages stimulated with toxoplasma gondii-derived heat shock protein 70. Infection and Immunity 73(8): 4634–4642.

    Article  CAS  Google Scholar 

  39. Scott, M.J., S. Liu, R.A. Shapiro, Y. Vodovotz, and T.R. Billiar. 2009. Endotoxin uptake in mouse liver is blocked by endotoxin pretreatment through a suppressor of cytokine signaling-1-dependent mechanism. Hepatology 49(5): 1695–1708.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China through Project 81000444 and 81370025, also by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Li, H., Sun, MJ. et al. Endotoxin Tolerance Induced by Lipopolysaccharides Derived from Porphyromonas gingivalis and Escherichia coli: Alternations in Toll-Like Receptor 2 and 4 Signaling Pathway. Inflammation 37, 268–276 (2014). https://doi.org/10.1007/s10753-013-9737-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9737-5

KEY WORDS

Navigation