Skip to main content

Advertisement

Log in

The Dynamics of Angiogenic Factors and Their Soluble Receptors in Relation to Organ Dysfunction in Disseminated Intravascular Coagulation Associated with Sepsis

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

We prospectively studied (1) the relationships between angiogenic factors, their soluble receptors and organ dysfunction and (2) the effects of disseminated intravascular coagulation (DIC)-induced platelet consumption, thrombin generation, and tissue hypoxia on the expression of the factors and receptors. Fifty patients with sepsis were classified into two subgroups: 37 patients with DIC and 13 patients without DIC. DIC patients showed higher Sequential Organ Failure Assessment (SOFA) scores, the prevalence of multiple organ dysfunction syndrome (MODS) and more increased soluble fibrin and lactate levels. We observed lower levels of vascular endothelial growth factor (VEGF), soluble VEGF receptor 2 (sVEGFR2), angiopoietin 1 (Ang1) and Ang1/Ang2, and higher sVEGFR1 and Ang2 levels in DIC patients, but not significant differences in soluble Tie2 expression during the study period. The levels of VEGF, sVEGFR1, and Ang2 in DIC patients correlated with the SOFA scores. Clear differences were observed in the levels of Ang2 in the DIC patients between survivors and nonsurvivors and between those with and without MODS. The area under receiver operating characteristic curves for predicting death and MODS by Ang2 were 0.710 and 0.784, respectively. The VEGF levels showed a marked correlation with the platelet counts. Soluble fibrin and lactate levels independently predicted increases in the levels of VEGF, sVEGFR1, and Ang2 in DIC patients. In conclusion, VEGF, sVEGFR1, Ang2, and Ang1/Ang2, especially Ang2, may have roles in the development of MODS in sepsis associated with DIC, and VEGF, sVEGFR1, and Ang2 serum levels correlated with the extent of DIC-induced platelet consumption, thrombin generation, and blood lactate levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Levi, M., and H. ten Cate. 1999. Disseminated intravascular coagulation. The New England Journal of Medicine 341: 586–592.

    Article  PubMed  CAS  Google Scholar 

  2. Gando, S. 2010. Microvascular thrombosis and multiple organ dysfunction syndrome. Critical Care Medicine 38(Suppl): S35–S42.

    Article  PubMed  Google Scholar 

  3. Taylor Jr., F.B., C.H. Toh, W.K. Hoots, H. Wada, and M. Levi. 2001. Toward definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thrombosis and Haemostasis 86: 1327–1330.

    PubMed  CAS  Google Scholar 

  4. Oda, M., J.Y. Han, and M. Nakamura. 2000. Endothelial cell dysfunction in microvasculature: Relevance to disease processes. Clinical Hemorheology and Microcirculation 23: 199–211.

    PubMed  CAS  Google Scholar 

  5. Takahashi, H., and M. Shibuya. 2005. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clinical Science 109: 227–241.

    Article  PubMed  CAS  Google Scholar 

  6. Olsson, A.K., A. Dimberg, J. Kreuger, and L. Claesson-Welsh. 2006. VEGF receptor signaling—In control of vascular function. Nature Reviews Molecular Cell Biology 7: 359–371.

    Article  PubMed  CAS  Google Scholar 

  7. Pugh, C.W., and P.J. Ratcliffe. 2003. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nature Medicine 9: 677–684.

    Article  PubMed  CAS  Google Scholar 

  8. Tsopanoglou, N.E., and M.E. Maragoudakis. 2004. Role of thrombin in angiogenesis and tumor progression. Seminars Thrombosis and Haemostasis 30: 63–69.

    Article  CAS  Google Scholar 

  9. Augustin, H.G., G.Y. Koh, G. Thurston, and K. Alitalo. 2009. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nature Reviews Molecular Cell Biology 10: 165–177.

    Article  PubMed  CAS  Google Scholar 

  10. Fiedler, U., and H.G. Augstin. 2006. Angiopoietins: A link between angiogenesis and inflammation. Trends in Immunology 27: 552–558.

    Article  PubMed  CAS  Google Scholar 

  11. Bae, J.S., and A.R. Rezaie. 2010. Thrombin upregulates the angiopoietin-Tie2 axis: Endothelial protein C receptor occupancy prevents the thrombin mobilization of angiopoietin 2 and P-selectin from Weibel–Palade bodies. Journal of Thrombosis and Haemostasis 8: 1107–1115.

    PubMed  CAS  Google Scholar 

  12. Oh, H., H. Takagi, K. Suzuma, A. Otani, M. Matsumura, and Y. Honda. 1999. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. The Journal of Biological Chemistry 274: 15732–15739.

    Article  PubMed  CAS  Google Scholar 

  13. Kim, I., J.L. Oh, Y.S. Ryu, J.N. So, W.C. Sessa, K. Walsh, et al. 2002. Angipoietin-1 negatively regulates expression and activity of tissue factor in endothelial cells. The FASEB Journal 16: 126–128.

    Google Scholar 

  14. Brindle, N.P.J., P. Saharinen, and K. Alitalo. 2006. Signaling and functions of angiopoetin-1 in vascular protection. Cirurgica Research 98: 1014–1023.

    Article  CAS  Google Scholar 

  15. Shapiro, N.I., K. Yano, H. Okada, C. Fischer, M. Howell, K.C. Spokes, et al. 2008. A prospective, observational study of soluble Flt-1 and vascular endothelial growth factor in sepsis. Shock 29: 452–457.

    Article  PubMed  CAS  Google Scholar 

  16. Alves, B.E., S.A. Montalvao, F.J.P. Aranha, I. Lorand-Metze, C.A. De Souza, J.M. Annichino-Bizzacchi, et al. 2011. Time-course of sFlt-1 and VEGF-A release in neutropenic patients with sepsis and septic shock: A prospective study. Journal Transactions Medicine 9: 23.

    Article  CAS  Google Scholar 

  17. Yang, K.Y., K.T. Liu, Y.C. Chen, C.S. Chen, Y.C. Lee, R.P. Peng, et al. 2011. Plasma soluble vascular endothelial growth factor receptor-1 levels predict outcomes of pneumonia-related septic shock patients: A prospective observational study. Critical Care 15: R11.

    Article  PubMed  Google Scholar 

  18. Kümpers, P., A. Lukasz, S. David, R. Horn, C. Hafer, R. Faulhaber-Walter, et al. 2008. Excess circulating angiopoietin-2 is a strong predictor of mortality in critically ill medical patients. Critical Care 12: R147.

    Article  PubMed  Google Scholar 

  19. Karlsson, S., V. Pettilä, J. Tenhunen, V. Lund, S. Hovilehto, and E. Ruokonen. 2008. Vascular endothelial growth factor in severe sepsis and septic shock. Anesthesia and Analgesia 106: 1820–1826.

    Article  PubMed  CAS  Google Scholar 

  20. Mankhambo, L.A., D. Banda, G. Jeffers, S.A. White, P. Balmer, S. Nkhoma, et al. 2010. The role of angiogenic factors in predicting clinical outcome in severe bacterial infection in Malawian children. Critical Care 14: R91.

    Article  PubMed  Google Scholar 

  21. van der Flier, M., H.J. van Leeuwen, K.P. van Kessel, J.L. Kimpen, A.I. Hoepelman, and S.P. Geelen. 2005. Plasma vascular endothelial growth factor in severe sepsis. Shock 23: 35–38.

    Article  PubMed  Google Scholar 

  22. Pickkers, P., T. Sprong, L. van Eijk, H. van der Hoeven, P. Smits, and M. van Deuren. 2005. Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock 24: 508–512.

    Article  PubMed  CAS  Google Scholar 

  23. Yano, K., P.C. Liaw, J.M. Mullington, S.C. Shih, H. Okada, N. Bodyak, et al. 2006. Vascualr endothelial growth factor in an important determinant of sepsis morbidity and mortality. The Journal of Experimental Medicine 203: 1447–1458.

    Article  PubMed  CAS  Google Scholar 

  24. Orfanos, S.E., A. Kotanidou, C. Glynos, C. Athanasiou, S. Tsigkos, I. Dimopoulou, et al. 2007. Angiopoietin-2 is increased in severe sepsis: Correlation with inflammatory mediators. Critical Care Medicine 35: 199–206.

    Article  PubMed  CAS  Google Scholar 

  25. Giuliano, J.S., P.M. Lahni, K. Harmon, H.R. Wong, L.A. Doughty, J.A. Carcillo, et al. 2007. Admission angiopoietin levels in children with septic shock. Shock 28: 650–654.

    PubMed  CAS  Google Scholar 

  26. Ricciuto, D.R., C.C. dos Santos, M. Hawkes, L.J. Toltl, A.L. Conroy, N. Rajwans, et al. 2011. Angiopoietin-1 and angiopoietin-2 as clinical informative prognostic biomarkers of morbidity and mortality in severe sepsis. Critical Care Medicine 39: 702–710.

    Article  PubMed  CAS  Google Scholar 

  27. Knaus, W.A., E.A. Draper, D.P. Wanger, and J.E. Zimmerman. 1985. APACHE II: A severity classification system. Critical Care Medicine 13: 818–829.

    Article  PubMed  CAS  Google Scholar 

  28. Ferreira, F.L., D.P. Bota, A. Bross, C. Mélot, and J.L. Vincent. 2001. Serial evaluation of the SOFA score to predict outcome in critically ill patients. Journal of the American Medical Association 286: 1754–1758.

    Article  PubMed  CAS  Google Scholar 

  29. Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference committee. 1992. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definition for sepsis and organ failure and guidelines for the use innovative therapies in sepsis. Critical Care Medicine 20: 864–874.

    Article  Google Scholar 

  30. Gando, S., D. Saitoh, H. Ogura, T. Mayumi, K. Koseki, T. Ikeda, et al. 2008. Japanese Association for Acute Medicine Disseminated Intravascular Coagulation (JAAM DIC) study group. Natural history of disseminated intravascular coagulation diagnosed based on the newly established diagnostic criteria for critically ill patients: Results of a multicenter, prospective survey. Critical Care Medicine 36: 145–150.

    Article  PubMed  Google Scholar 

  31. Webb, N.J.A., M.J. Bottomley, C.J. Watson, and P.C. Brenchiley. 1998. Vascular endothelial growth factor (VEGF) is released from platelets during blood clotting: Implications for measurement of circulating VEGF levels in clinical disease. Clinical Science 94: 395–404.

    PubMed  CAS  Google Scholar 

  32. Verheul, H.M.W., K. Hoekman, S. Luykx-de Bakker, C.A. Eekman, C.C. Folman, H.J. Broxterman, et al. 1997. Platelet: Transporter of vascular endothelial growth factor. Clinical Cancer Research 3: 2187–2190.

    PubMed  CAS  Google Scholar 

  33. Kusumoto, Y.H., W.A. Dam, G.A.P. Hospers, C. Meijer, and N.H. Mulder. 2003. Platelets and granulocytes, in particular the neutrophils, form important compartments for circulating vascular endothelial growth factor. Angiogenesis 6: 283–287.

    Article  Google Scholar 

  34. Möhle, R., D. Green, M.A.S. Moore, R.L. Nachman, and S. Rafii. 1997. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proceedings NationalAcademia Science USA 94: 663–668.

    Article  Google Scholar 

  35. Tsao, P.N., F.T. Chan, S.C. Wei, W.S. Hsieh, H.C. Chou, Y.N. Su, et al. 2007. Soluble vascular endothelial growth factor receptor-1 protects mice in sepsis. Critical Care Medicine 35: 1955–1960.

    Article  PubMed  CAS  Google Scholar 

  36. Reusch, P., B. Barleon, K. Weindel, G. Martiny-Baron, A. Godde, G. Siemeister, et al. 2001. Identification of soluble form of angiopoietin receptor TIE-2 released from endothelial cells and present in human blood. Angiogenesis 4: 123–131.

    Article  PubMed  CAS  Google Scholar 

  37. van der Heijden, M., G.P. van Nieuw Ameorongen, V.W.M. van Hinsbergh, and A.B. Johan Groeneveld. 2010. The interaction of soluble Tie2 with angiopoietin and pulmonary vascular permeability in septic and non septic critically ill patients. Shock 33: 263–268.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (2009-21249086).

Conflict of Interest

The authors declare that they have no direct and indirect competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Gando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jesmin, S., Wada, T., Gando, S. et al. The Dynamics of Angiogenic Factors and Their Soluble Receptors in Relation to Organ Dysfunction in Disseminated Intravascular Coagulation Associated with Sepsis. Inflammation 36, 186–196 (2013). https://doi.org/10.1007/s10753-012-9534-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9534-6

KEY WORDS

Navigation