Skip to main content
Log in

Neutrophilic Inflammatory Response and Oxidative Stress in Premenopausal Women Chronically Exposed to Indoor Air Pollution from Biomass Burning

  • Published:
Inflammation Aims and scope Submit manuscript

Abstact

The possibility of inflammation and neutrophil activation in response to indoor air pollution (IAP) from biomass fuel use has been investigated. For this, 142 premenopausal, never-smoking women (median age, 34 years) who cook exclusively with biomass (wood, dung, crop wastes) and 126 age-matched control women who cook with cleaner fuel liquefied petroleum gas (LPG) were enrolled. The neutrophil count in blood and sputum was significantly higher (p < 0.05) in biomass users than the control group. Flow cytometric analysis revealed marked increase in the surface expression of CD35 (complement receptor-1), CD16 (FCγ receptor III), and β2 Mac-1 integrin (CD11b/CD18) on circulating neutrophils of biomass users. Besides, enzyme-linked immunosorbent assay showed that they had 72%, 67%, and 54% higher plasma levels of the proinflammatory cytokines tumor necrosis factor-alpha, interleukin-6, and interleukin-12, respectively, and doubled neutrophil chemoattractant interleukin-8. Immunocytochemical study revealed significantly higher percentage of airway neutrophils expressing inducible nitric oxide synthase, while the serum level of nitric oxide was doubled in women who cooked with biomass. Spectrophotometric analysis documented higher myeloperoxidase activity in circulating neutrophils of biomass users, suggesting neutrophil activation. Flow cytometry showed excess generation of reactive oxygen species (ROS) by leukocytes of biomass-using women, whereas their erythrocytes contained a depleted level of antioxidant enzyme superoxide dismutase (SOD). Indoor air of biomass-using households had two to four times more particulate matter with diameters of <10 μm (PM10) and <2.5 μm (PM2.5) as measured by real-time laser photometer. After controlling potential confounders, rise in proinflammatory mediators among biomass users were positively associated with PM10 and PM2.5 in indoor air, suggesting a close relationship between IAP and neutrophil activation. Besides, the levels of neutrophil activation and inflammation markers were positively associated with generation of ROS and negatively with SOD, indicating a role of oxidative stress in mediating neutrophilic inflammatory response following chronic inhalation of biomass smoke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACD:

acid citrate dextrose

BMF:

biomass fuel

BSA:

bovine serum albumin

DCF-DA:

dichlorofluorescein diacetate

EDTA:

ethylenediaminetetraacetic acid

ELISA:

enzyme-linked immunosorbent assay

FACS:

fluorescence-activated cell sorter

FITC:

fluorescein isothiocyanate

HRP:

horseradish peroxidase

IAP:

indoor air pollution

ICC:

immunocytochemistry

IL:

interleukin

iNOS:

inducible nitric oxide synthase

LPG:

liquefied petroleum gas

MFI:

mean fluorescence intensity

MPO:

myeloperoxidase

NO:

nitric oxide

PAP:

Papanicolaou

PBS:

phosphate-buffered saline

PE:

phycoerythrin

PM:

particulate matter

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TNF:

tumor necrosis factor

References

  1. Zhang, J., and K.R. Smith. 1996. Hydrocarbon emissions and health risks from cook stoves in developing countries. Journal of Exposure Analysis and Environmental Epidemiology 6: 147–161.

    PubMed  Google Scholar 

  2. Smith, K.R. 2000. National burden of disease in India from indoor air pollution. Proceedings of the National Academy of Sciences of the United States of America 97: 3286–3293.

    Google Scholar 

  3. Pandey, M.R., J.S.M. Boleij, K.R. Smith, and E.M. Wafula. 1989. Indoor air pollution in developing countries and acute respiratory infections in children. Lancet 1: 424–429.

    Google Scholar 

  4. Ghio, A.J., and R.B. Devlin. 2001. Inflammatory lung injury after bronchial instillation of air pollution particles. American Journal of Respiratory and Critical Care Medicine 164: 704–708.

    PubMed  CAS  Google Scholar 

  5. Mukae, H., R. Vincent, K. Quinlan, D. English, J. Hards, J.C. Hogg, and S.F. van Eeden. 2001. The effect of repeated exposure to particulate air pollution (PM10) on the bone marrow. American Journal of Respiratory and Critical Care Medicine 163: 201–209.

    PubMed  CAS  Google Scholar 

  6. Nordenhall, C., J. Pourazar, A. Blomberg, J.O. Levin, T. Sandstrom, and E. Adelroth. 2000. Airway inflammation following exposure to diesel exhaust: A study of time kinetics using induced sputum. The European Respiratory Journal 15: 1046–1051.

    Article  PubMed  CAS  Google Scholar 

  7. Rudell, B., A. Blomberg, R. Helleday, M.C. Ledin, B. Lundbäck, N. Stjernberg, P. Hörstedt, and T. Sandström. 1999. Bronchoalveolar inflammation after exposure to diesel exhaust: Comparison between unfiltered and particle trap filtered exhaust. Occupational and Environmental Medicine 56: 527–534.

    Article  PubMed  CAS  Google Scholar 

  8. Salvi, S., A. Blomberg, B. Rudell, F. Kelly, T. Sandström, S.T. Holgate, and A. Frew. 1999. Acute inflammatory responses in the airways and peripheral blood after short term exposure to diesel exhaust in healthy human volunteers. American Journal of Respiratory and Critical Care Medicine 159: 702–709.

    PubMed  CAS  Google Scholar 

  9. Seaton, A., W. Macnee, K. Donaldson, and D. Godden. 1995. Particulate air pollution and acute health effects. Lancet 345: 176–178.

    Article  PubMed  CAS  Google Scholar 

  10. Ishii, T., K. Itoh, E. Ruiz, D.S. Leake, H. Unoki, M. Yamamoto, and G.E. Mann. 2004. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: Activation by oxidatively modified LDL and 4-hydroxynonenal. Circulation Research 94: 609–616.

    Article  PubMed  CAS  Google Scholar 

  11. Suwa, T., J.C. Hogg, K.B. Quinlan, A. Ohgami, R. Vincent, and S.F. van Eeden. 2002. Particulate air pollution induces progression of atherosclerosis. Journal of the American College of Cardiology 39: 935–942.

    Article  PubMed  CAS  Google Scholar 

  12. van Eeden, S.F., W.C. Tan, T. Suwa, H. Mukae, T. Terashima, T. Fujii, D. Qui, R. Vincent, and J.C. Hogg. 2001. Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM10). American Journal of Respiratory and Critical Care Medicine 164: 826–830.

    PubMed  Google Scholar 

  13. Naeher, L.P., M. Brauer, M. Lipsett, J.T. Zelikoff, C.D. Simpson, J.Q. Koenig, and K.R. Smith. 2007. Wood smoke health effects: A review. Inhalation Toxicology 19: 67–106.

    Article  PubMed  CAS  Google Scholar 

  14. Fujii, T., S. Hayashi, J.C. Hogg, R. Vincent, and S.F. van Eeden. 2001. Particulate matter induces cytokine expression in human bronchial epithelial cells. American Journal of Respiratory Cell and Molecular Biology 25: 265–271.

    PubMed  CAS  Google Scholar 

  15. Balamayooran, G., S. Batra, M.B. Fessler, K.I. Happel, and S. Jeyaseelan. 2010. Mechanisms of neutrophil accumulation in the lungs against bacteria. American Journal of Respiratory Cell and Molecular Biology 43: 5–16.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, Y., S.K. Shaw, and S. Ma. 2004. Regulation of leukocyte transmigration: Cell surface interactions and signaling events. Journal of Immunology 172: 7–13.

    CAS  Google Scholar 

  17. Chung, K.F. 1986. Role played by inflammation in the hyperreactivity of the airways in asthma. Thorax 41: 657–662.

    Article  PubMed  CAS  Google Scholar 

  18. Gibson, P.G., J.L. Simpson, and N. Saltos. 2001. Heterogeneity of airway inflammation in persistent asthma: Evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 119: 1329–1336.

    Article  PubMed  CAS  Google Scholar 

  19. Jatakanon, A., C. Uasuf, W. Maziak, S. Lim, K.F. Chung, and P.J. Barnes. 1999. Neutrophilic inflammation in severe persistent asthma. American Journal of Respiratory and Critical Care Medicine 160: 1532–1539.

    PubMed  CAS  Google Scholar 

  20. Tonnel, A.B., P. Gosset, and I. Tillie-Leblond. 2001. Characteristics of the inflammatory response in bronchial lavage fluids from patients with status asthmaticus. International Archives of Allergy and Immunology 124: 267–271.

    Article  PubMed  CAS  Google Scholar 

  21. Voynow, J.A., B.M. Fischer, D.E. Malarkey, L.H. Burch, T. Wong, M. Longphre, S.B. Ho, and W.M. Foster. 2004. Neutrophil elastase induces mucus cell metaplasia in mouse lung. American Journal of Physiology. Lung Cellular and Molecular Physiology 287: L1293–L1302.

    Article  PubMed  CAS  Google Scholar 

  22. Huang, C.D., H.H. Chen, C.H. Wang, C.L. Chou, S.M. Lin, H.C. Lin, and H.P. Kuo. 2004. Human neutrophil-derived elastase induces airway smooth muscle cell proliferation. Life Sciences 74: 2479–2492.

    Article  PubMed  CAS  Google Scholar 

  23. Oltmanns, U., M.B. Sukkar, S. Xie, M. John, and K.F. Chung. 2005. Induction of human airway smooth muscle apoptosis by neutrophils and neutrophil elastase. American Journal of Respiratory Cell and Molecular Biology 32: 334–341.

    Article  PubMed  CAS  Google Scholar 

  24. Ikitimur, B., and B. Karadag. 2010. Role of myeloperoxidase in cardiology. Future Cardiology 6: 693–702.

    Article  PubMed  CAS  Google Scholar 

  25. Yamagata, T., H. Sugiura, T. Yokoyama, S. Yanagisawa, T. Ichikawa, K. Ueshima, K. Akamatsu, T. Hirano, M. Nakanishi, Y. Yamagata, K. Matsunaga, Y. Minakata, and M. Ichinose. 2007. Overexpression of CD-11b and CXCR1 on circulating neutrophils: Its possible role in COPD. Chest 132: 890–899.

    Article  PubMed  CAS  Google Scholar 

  26. Inoue, K., H. Takano, and Y. Zasshi. 2011. Biology of diesel exhaust effects on allergic pulmonary inflammation. Yakugaku Zasshi 131: 367–371.

    Article  PubMed  CAS  Google Scholar 

  27. Budinger, G.R., J.L. McKell, D. Urich, N. Foiles, I. Weiss, S.E. Chiarella, A. Gonzalez, S. Soberanes, A.J. Ghio, R. Nigdelioglu, E.A. Mutlu, K.A. Radigan, D. Green, H.C. Kwaan, and G.M. Mutlu. 2011. Particulate matter-induced lung inflammation increases systemic levels of PAI-1 and activates coagulation through distinct mechanisms. PloS One 6: e18525.

    Article  PubMed  CAS  Google Scholar 

  28. Carpentier, J.L., D.P. Lew, J.P. Paccaud, R. Gil, B. Iacopetta, M. Kazatchkine, O. Stendahl, and T. Pozzan. 1991. Internalization pathway of C3b receptors in human neutrophils and its transmodulation by chemoattractant receptors stimulation. Cell Regulation 2: 41–55.

    PubMed  CAS  Google Scholar 

  29. Smith, J., A. Gray, D. Pyne, M. Baker, R. Telford, and M. Weidemann. 1996. Moderate exercise triggers both priming and activation of neutrophil subpopulations. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 270: R838–R845.

    CAS  Google Scholar 

  30. Davey, P.C., M. Zuzel, A.S. Kamiguti, J.A. Hunt, and K.A. Aziz. 2000. Activation-dependent proteolytic degradation of polymorphonuclear CD11b. British Journal of Haematology 111: 934–942.

    Article  PubMed  CAS  Google Scholar 

  31. Fleit, H.B., C.D. Kobasiuk, C. Daly, R. Furie, P.C. Levy, and R.O. Webster. 1992. A soluble form of Fc gamma RIII is present in human serum and other body fluids and is elevated at sites of inflammation. Blood 79: 2721–2728.

    PubMed  CAS  Google Scholar 

  32. Sadallah, S., E. Lach, H.U. Lutz, S. Schwarz, P.A. Guerne, and J.A. Schifferli. 1997. CR1, CD35 in synovial fluid from patients with inflammatory joint diseases. Arthritis and Rheumatism 40: 520–526.

    Article  PubMed  CAS  Google Scholar 

  33. Babcock, G.F., J.W. Alexander, and G.D. Warden. 1990. Flow cytometric analysis of neutrophil subsets in thermally injured patients developing infection. Clinical Immunology and Immunopathology 54: 117–125.

    Article  PubMed  CAS  Google Scholar 

  34. Crockett-Torabi, E., and J.C. Fantone. 1990. Soluble and insoluble immune complexes activate human neutrophil NADPH oxidase by distinct Fc gamma receptor-specific mechanisms. Journal of Immunology 145: 3026–3032.

    CAS  Google Scholar 

  35. Weiss, S. 1989. Tissue destruction by neutrophils. The New England Journal of Medicine 320: 365–379.

    Article  PubMed  CAS  Google Scholar 

  36. Mondal, N.K., A. Dutta, A. Banerjee, S. Chakraborty, T. Lahiri, and M.R. Ray. 2009. Effect of indoor air pollution from biomass fuel use on argyrophilic nuclear organizer regions in buccal epithelial cells. Journal of Environmental Pathology, Toxicology and Oncology 28: 253–259.

    PubMed  CAS  Google Scholar 

  37. Mondal, N.K., D. Das, B. Mukherjee, and M.R. Ray. 2011. Upregulation of AgNOR expression in epithelial cells and neutrophils in the airways and leukocytes in peripheral blood of women chronically exposed to biomass smoke. Analytical and Quantitative Cytology and Histology 33: 50–59.

    PubMed  Google Scholar 

  38. Mondal, N.K., B. Mukherjee, D. Das, and M.R. Ray. 2010. Micronucleus formation, DNA damage and repair in premenopausal women chronically exposed to high level of indoor air pollution from biomass fuel use in rural India. Mutation Research 697: 47–54.

    PubMed  CAS  Google Scholar 

  39. Mondal, N.K., P. Bhattacharya, and M.R. Ray. 2011b. Assessment of DNA damage by comet assay and fast halo assay in buccal epithelial cells of Indian women chronically exposed to biomass smoke. International Journal of Hygiene and Environmental Health. doi:10.1016/j.ijheh.2011.04.003.

  40. Mondal, N.K., A. Roy, B. Mukherjee, D. Das, and M.R. Ray. 2010. Indoor air pollution from biomass burning activates Akt in airway cells and peripheral blood lymphocytes: A study among premenopausal women in rural India. Toxicologic Pathology 38: 1085–1098.

    Article  PubMed  CAS  Google Scholar 

  41. Dutta, A., B. Mukherjee, D. Das, A. Banerjee, and M.R. Ray. 2011. Hypertension with elevated levels of oxidized low-density lipoprotein and anticardiolipin antibody in the circulation of premenopausal Indian women chronically exposed to biomass smoke during cooking. Indoor Air 21: 165–176.

    Article  PubMed  CAS  Google Scholar 

  42. Erkilic, S., C. Ozsarac, and S. Kullu. 2003. Sputum cytology for the diagnosis of lung cancer: Comparison of smear and modified cell block methods. Acta Cytologica 47: 1023–1027.

    Article  PubMed  Google Scholar 

  43. Hughes, H.E., and T.C. Dodds. 1968. Handbook of diagnostic cytology. Edinburgh: E&S Livingstone.

    Google Scholar 

  44. Grubb, C. 1988. Diagnostic cytopathology—A textbook and colour atlas. Edinburgh: Churchill Livingstone.

    Google Scholar 

  45. Drábiková, K., R. Nosál, V. Jancinová, M. Cíz, and A. Lojek. 2002. Reactive oxygen metabolite production is inhibited by histamine and H1-antagonist dithiaden in human PMN leukocytes. Free Radical Research 36: 975–980.

    Article  PubMed  Google Scholar 

  46. Kurutas, E.B., O. Arican, and S. Sasmaz. 2005. Superoxide dismutase and myeloperoxidase activities in polymorphonuclear leukocytes in acne vulgaris. Acta Dermatovenerologica Alpina, Panonica, et Adriatica 14: 39–42.

    PubMed  Google Scholar 

  47. Rothe, G., and G. Valet. 1990. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2, 7-dichlorofluorescein. Journal of Leukocyte Biology 47: 440–448.

    PubMed  CAS  Google Scholar 

  48. Paoletti, F., D. Aldinucci, A. Mocali, and A. Caparrini. 1986. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Analytical Biochemistry 154: 536–541.

    Article  PubMed  CAS  Google Scholar 

  49. Lehocky, A.H., and L.P. Williams. 1996. Comparison of respirable samplers to direct-reading real-time aerosol monitors for measuring coal dust. American Industrial Hygiene Association Journal 57: 1013–1018.

    Article  CAS  Google Scholar 

  50. Siddiqui, A.R., K. Lee, D. Bennett, X. Yang, K.H. Brown, Z.A. Bhutta, and E.B. Gold. 2009. Indoor carbon monoxide and PM2.5 concentrations by cooking fuels in Pakistan. Indoor Air 19: 75–82.

    Article  PubMed  CAS  Google Scholar 

  51. Chung, A., D.P. Chang, M.J. Kleeman, K.D. Perry, T.A. Cahill, D. Dutcher, E.M. McDougall, and K. Stroud. 2001. Comparison of real-time instruments used to monitor airborne particulate matter. Journal of the Air & Waste Management Association 51: 109–120.

    CAS  Google Scholar 

  52. Muller Kobold, A.C., J.G. Zijlstra, H.R. Koene, M. de Haas, C.G. Kallenberg, and J.W. Tervaert. 1998. Levels of soluble Fc gammaRIII correlate with disease severity in sepsis. Clinical and Experimental Immunology 114: 220–227.

    Article  PubMed  CAS  Google Scholar 

  53. Barregard, L., G. Sällsten, L. Andersson, A.C. Almstrand, P. Gustafson, M. Andersson, and A.C. Olin. 2008. Experimental exposure to wood smoke: Effects on airway inflammation and oxidative stress. Occupational and Environmental Medicine 65: 319–324.

    Article  PubMed  CAS  Google Scholar 

  54. Frampton, M.W., J.C. Stewart, G. Oberdorster, P.E. Morrow, D. Chalupa, A.P. Pietropaoli, L.M. Frasier, D.M. Speers, C. Cox, L.S. Huang, and M.J. Utell. 2006. Inhalation of ultrafine particles alters blood leukocyte expressions of adhesion molecules in humans. Environmental Health Perspectives 114: 51–58.

    Article  PubMed  CAS  Google Scholar 

  55. Il'yasova, D., A. Ivanova, J.D. Morrow, M. Cesari, and M. Pahor. 2008. Correlation between two markers of inflammation, serum C-reactive protein and interleukin 6, and indices of oxidative stress in patients with high risk of cardiovascular disease. Biomarkers 13: 41–51.

    Article  PubMed  Google Scholar 

  56. Parkos, C.A., C. Delp, M.A. Arnaout, and J.L. Madara. 1991. Neutrophil migration across a cultured intestinal epithelium: Dependence on a CD11b/CD18-mediated event and enhanced efficiency in physiological direction. The Journal of Clinical Investigation 88: 1605–1612.

    Article  PubMed  CAS  Google Scholar 

  57. Koethe, S.M., J.R. Kuhnmuench, and C.G. Becker. 2000. Neutrophil priming by cigarette smoke condensate and a tobacco antiidiotypic antibody. The American Journal of Pathology 157: 1735–1743.

    Article  PubMed  CAS  Google Scholar 

  58. Edwards, S.W., and F. Watson. 1995. The cell biology of phagocytes. Immunology Today 16: 508–510.

    Article  PubMed  CAS  Google Scholar 

  59. Noguera, A., X. Busquets, J. Sauleda, J.M. Villaverde, W. MacNee, and A.G. Agustí. 1998. Expression of adhesion molecules and G proteins in circulating neutrophils in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 158: 1664–1668.

    PubMed  CAS  Google Scholar 

  60. Goldmann, B.U., V. Rudolph, T.K. Rudolph, A.K. Holle, M. Hillebrandt, T. Meinertz, and S. Baldus. 2009. Neutrophil activation precedes myocardial injury in patients with acute myocardial infarction. Free Radical Biology & Medicine 47: 79–83.

    Article  CAS  Google Scholar 

  61. Lange, M., A. Hamahata, D.L. Traber, Y. Nakano, L.D. Traber, and P. Enkhbaatar. 2011. Specific inhibition of nitric oxide synthases at different time points in a murine model of pulmonary sepsis. Biochemical and Biophysical Research Communications 404: 877–881.

    Article  PubMed  CAS  Google Scholar 

  62. Shang, L.H., Z.Q. Luo, X.D. Deng, M.J. Wang, F.R. Huang, D.D. Feng, and S.J. Yue. 2010. Expression of N-methyl-D-aspartate receptor and its effect on nitric oxide production of rat alveolar macrophages. Nitric Oxide 23: 327–331.

    Article  PubMed  CAS  Google Scholar 

  63. Ding, R., J. Han, Y. Tian, R. Guo, and X. Ma. 2011. Sphingosine-1-phosphate attenuates lung injury induced by intestinal ischemia/reperfusion in mice: Role of inducible nitric-oxide synthase. Inflammation. doi:10.1007/s10753-011-9301-0.

  64. Rus, A., L. Castro, M.L. Del Moral, and A. Peinado. 2010. Inducible NOS inhibitor 1400 W reduces hypoxia/re-oxygenation injury in rat lung. Redox Report 15: 169–178.

    Article  PubMed  CAS  Google Scholar 

  65. Jiménez, L.A., E.M. Drost, P.S. Gilmour, I. Rahman, F. Antonicelli, H. Ritchie, W. MacNee, and K. Donaldson. 2002. PM10-exposed macrophages stimulate a pro inflammatory response in lung epithelial cells via TNF-α. American Journal of Physiology. Lung Cellular and Molecular Physiology 282: L237–L248.

    PubMed  Google Scholar 

  66. Keatings, V.M., P.D. Collins, and D.M. Scott. 1996. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. American Journal of Respiratory and Critical Care Medicine 153: 530–534.

    PubMed  CAS  Google Scholar 

  67. Khalequzzaman, M., M. Kamijima, K. Sakai, B.A. Hoque, and T. Nakajima. 2010. Indoor air pollution and the health of children in biomass- and fossil-fuel users of Bangladesh: Situation in two different seasons. Environmental Health and Preventive Medicine 15: 236–243.

    Article  PubMed  CAS  Google Scholar 

  68. Kimata, H. 2004. Effect of exposure to volatile organic compounds on plasma levels of neuropeptides, nerve growth factor and histamine in patients with self-reported multiple chemical sensitivity. International Journal of Hygiene and Environmental Health 207: 159–163.

    Article  PubMed  CAS  Google Scholar 

  69. D'Amato, G., L. Cecchi, M. D'Amato, and G. Liccardi. 2010. Urban air pollution and climate change as environmental risk factors of respiratory allergy: An update. Journal of Investigational Allergology & Clinical Immunology 20: 95–102.

    Google Scholar 

  70. Gilmour, M.I., M.S. Jaakkola, S.J. London, A.E. Nel, and C.A. Rogers. 2006. How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthma. Environmental Health Perspectives 114: 627–633.

    Article  PubMed  CAS  Google Scholar 

  71. Scapellato, M.L., and M. Lotti. 2007. Short-term effects of particulate matter: An inflammatory mechanism? Critical Reviews in Toxicology 37: 461–487.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from Central Pollution Control Board, Delhi in carrying out this study.

Conflicts of interest statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandan Kumar Mondal.

Additional information

Anirban Banerjee and Nandan Kumar Mondal contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, A., Mondal, N.K., Das, D. et al. Neutrophilic Inflammatory Response and Oxidative Stress in Premenopausal Women Chronically Exposed to Indoor Air Pollution from Biomass Burning. Inflammation 35, 671–683 (2012). https://doi.org/10.1007/s10753-011-9360-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-011-9360-2

KEY WORDS

Navigation