Skip to main content
Log in

Infusion of a Glucose Solution Reduces Autophagy in the Liver after LPS-induced Systemic Inflammation

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Autophagy is a natural process by which a cell maintains homeostasis, usually taking place unnoticed by adjacent cells. Glucose is involved in a negative feedback loop in autophagy. Autophagy is characterized by the induction and secretion of HMGB1, yet the nature of the inflammatory response during and the effect of glucose administration on autophagy are not well understood. Systemic inflammation was induced in experimental animals by LPS injection (7.5 mg/kg) followed by a continuous infusion of either 1%, 5%, or 25% glucose. Autophagy was visualized by immunohistochemistry 12 h after LPS injection. Likewise, protein levels of microtubule-associated protein light chain 3 (LC3)-II, autophagy-related protein 7 (Atg7), and high-mobility group box 1 (HMGB1) were assayed by western blot analysis. We found that autophagy increased in liver tissue in response to LPS-induced systemic inflammation. However, protein levels decreased in rats receiving LPS and a 5% glucose solution. Our results suggest that LPS-induced systemic inflammation increases autophagy in liver cells, potentially involving the upregulation of LC3-II, Atg7, and HMGB1. We also show that a 5% glucose infusion reduces autophagy. We propose that maintaining serum glucose levels with an adequate glucose dose improves systemic inflammation by reducing autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lydon, A., and J.A. Martyn. 2003. Apoptosis in critical illness. International Anesthesiology Clinics 41: 65–77.

    Article  PubMed  Google Scholar 

  2. Levine, B., and D.J. Klionsky. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell 6: 463–477.

    Article  PubMed  CAS  Google Scholar 

  3. Lee, H.K., and L. Marzella. 1994. Regulation of intracellular protein degradation with special reference to lysosomes: role in cell physiology and pathology. Int Rev Exp Pathol 35: 39–147.

    PubMed  CAS  Google Scholar 

  4. Yoshimori, T. 2007. Autophagy: paying Charon's toll. Cell 128: 833–837.

    Article  PubMed  CAS  Google Scholar 

  5. De Duve, C., and R. Wattiaux. 1966. Functions of lysosomes. Annual Review of Physiology 28: 435–492.

    Article  PubMed  Google Scholar 

  6. Kotoulas, O.B., S.A. Kalamidas, and D.J. Kondomerkos. 2006. Glycogen autophagy in glucose homeostasis. Pathology, Research and Practice 202: 631–638.

    Article  PubMed  CAS  Google Scholar 

  7. Levine, B., and G. Kroemer. 2008. Autophagy in the pathogenesis of disease. Cell 132: 27–42.

    Article  PubMed  CAS  Google Scholar 

  8. Petrovski, G., G. Zahuczky, G. Májai, and L. Fésüs. 2007. Phagocytosis of cells dying through autophagy evokes a pro-inflammatory response in macrophages. Autophagy 3: 509–511.

    PubMed  CAS  Google Scholar 

  9. Boulos, M., M.E. Astiz, R.S. Barua, and M. Osman. 2003. Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly(ADP-ribose) synthase. Critical Care Medicine 31: 353–358.

    Article  PubMed  CAS  Google Scholar 

  10. Lemasters, J.J. 2007. Modulation of mitochondrial membrane permeability in pathogenesis, autophagy and control of metabolism. Journal of Gastroenterology and Hepatology 22: S31–S37.

    Article  PubMed  CAS  Google Scholar 

  11. Cecconi, F., and B. Levine. 2008. The role of autophagy in mammalian development: cell makeover rather than cell death. Developmental Cell 15: 344–357.

    Article  PubMed  CAS  Google Scholar 

  12. Maruyama, R., K. Goto, and G. Takemura. 2008. Morphological and biochemical characterization of basal and starvation-induced autophagy in isolated adult rat cardiomyocytes. American Journal of Physiology. Heart and Circulatory Physiology 295: H1599–H1607.

    Article  PubMed  CAS  Google Scholar 

  13. Bustin, M. 1999. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Molecular and Cellular Biology 19: 5237–5246.

    PubMed  CAS  Google Scholar 

  14. Wang, H., H. Yang, C.J. Czura, A.E. Sama, and K.J. Tracey. 2001. HMGB1 as a late mediator of lethal systemic inflammation. American Journal of Respiratory and Critical Care Medicine 164: 1768–1773.

    PubMed  CAS  Google Scholar 

  15. Mantell, L.L., W.R. Parrish, and L. Ulloa. 2006. Hmgb-1 as a therapeutic target for infectious and inflammatory disorders. Shock 25: 4–11.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, H., and S. Ma. 2008. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. The American Journal of Emergency Medicine 26: 711–715.

    Article  PubMed  Google Scholar 

  17. Fink, M.P. 2007. Bench-to-bedside review: high-mobility group box 1 and critical illness. Critical Care 11: 229.

    Article  PubMed  Google Scholar 

  18. Thorburn, J., A.E. Frankel, and A. Thorburn. 2009. Regulation of HMGB1 release by autophagy. Autophagy 5: 247–249.

    Article  PubMed  CAS  Google Scholar 

  19. Heijnen, B.H., I.H. Straatsburg, D.J. Gouma, and T.M. van Gulik. 2003. Decrease in core liver temperature with 10 degrees C by in situ hypothermic perfusion under total hepatic vascular exclusion reduces liver ischemia and reperfusion injury during partial hepatectomy in pigs. Surgery 34: 806–817.

    Article  Google Scholar 

  20. Klionsky, D.J. 2007. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Reviews. Molecular Cell Biology 8: 931–937.

    Article  PubMed  CAS  Google Scholar 

  21. Kabeya, Y., N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. Kominami, Y. Ohsumi, and T. Yoshimori. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal 19: 5720–5728.

    Article  PubMed  CAS  Google Scholar 

  22. Sou, Y.S., I. Tanida, M. Komatsu, T. Ueno, and E. Kominami. 2005. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. The Journal of Biological Chemistry 281: 3017–3024.

    Article  PubMed  Google Scholar 

  23. Kondo, Y., T. Kanzawa, R. Sawaya, and S. Kondo. 2005. The role of autophagy in cancer development and response to therapy. Nature Reviews. Cancer 5: 726–734.

    Article  PubMed  CAS  Google Scholar 

  24. Boland, B., and R.A. Nixon. 2006. Neuronal macroautophagy: from development to degeneration. Molecular Aspects of Medicine 27: 503–519.

    Article  PubMed  CAS  Google Scholar 

  25. Colombo, M.I. 2007. Autophagy: a pathogen driven process. IUBMB Life 59: 238–242.

    Article  PubMed  CAS  Google Scholar 

  26. Rautou, P.E., D. Cazals-Hatem, R. Moreau, C. Francoz, G. Feldmann, D. Lebrec, E. Ogier-Denis, P. Bedossa, D. Valla, and F. Durand. 2008. Acute liver cell damage in patients with anorexia nervosa: a possible role of starvation-induced hepatocyte autophagy. Gastroenterology 135: 840–848.

    Article  PubMed  Google Scholar 

  27. Wang, A., and V.C. Hascall. 2009. Hyperglycemia, intracellular hyaluronan synthesis, cyclin D3 and autophagy. Autophagy 5: 864–865.

    PubMed  Google Scholar 

  28. Bursch, W., A. Karwan, M. Mayer, J. Dornetshuber, U. Fröhwein, R. Schulte-Hermann, B. Fazi, F. Di Sano, L. Piredda, M. Piacentini, G. Petrovski, L. Fésüs, and C. Gerner. 2008. Cell death and autophagy: cytokines, drugs, and nutritional factors. Toxicology 254: 147–157.

    Article  PubMed  CAS  Google Scholar 

  29. Mortimore, G.E., G. Miotto, R. Venerando, and M. Kadowaki. 1996. Autophagy. In Biology of the lysosome, eds. J.B. Lloyd, and R.W. Mason, 93–135. New York: Plenum.

  30. Michie, H.R. 1988. Detection of circulating tumor necrosis factor after endotoxin administration. The New England Journal of Medicine 318: 1481–1486.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Hiroaki Kawazato and Aiko Yasuda for their helpful advice on the preparation of samples for transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Hagiwara.

Additional information

Institution where the work was performed: Oita University Faculty of Medicine, 1-1 Idaigaoka-Hasamamachi, Yufu City, Oita 879-5593, Japan

Financial Support

This work was supported by a Grant-in-Aid program for Science Research (KAKENHI).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagiwara, S., Iwasaka, H., Hasegawa, A. et al. Infusion of a Glucose Solution Reduces Autophagy in the Liver after LPS-induced Systemic Inflammation. Inflammation 35, 249–258 (2012). https://doi.org/10.1007/s10753-011-9311-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-011-9311-y

KEY WORDS

Navigation