Skip to main content
Log in

Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Glycyrrhizin, a major constituent of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate insulin resistance, hyperglycemia, dyslipidemia, and obesity in rats with metabolic syndrome. Liver dysfunction is associated with this syndrome. The objective of this study is to investigate the effect of glycyrrhizin treatment on metabolic syndrome-induced liver damage. After induction of metabolic syndrome in rats by high fructose (60 %) diet for 6 weeks, the rats were treated with glycyrrhizin (50 mg/kg body weight, single intra-peritoneal injection). After 2 weeks of treatment, rats were sacrificed to collect blood samples and liver tissues. Compared to normal, elevated activities of serum alanine transaminase, alkaline phosphatase and aspartate transaminase, increased levels of liver advanced glycation end products, reactive oxygen species, lipid peroxidation, protein carbonyl, protein kinase Cα, NADPH oxidase-2, and decreased glutathione cycle components established liver damage and oxidative stress in fructose-fed rats. Activation of nuclear factor κB, mitogen-activated protein kinase pathways as well as signals from mitochondria were found to be involved in liver cell apoptosis. Increased levels of cyclooxygenase-2, tumor necrosis factor, and interleukin-12 proteins suggested hepatic inflammation. Metabolic syndrome caused hepatic DNA damage and poly-ADP ribose polymerase cleavage. Fluorescence-activated cell sorting using annexin V/propidium iodide staining confirmed the apoptotic hepatic cell death. Histology of liver tissue also supported the experimental findings. Treatment with glycyrrhizin reduced oxidative stress, hepatic inflammation, and apoptotic cell death in fructose-fed rats. The results suggest that glycyrrhizin possesses therapeutic potential against hepatocellular damage in metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. The Lancet 365:1415–1428

    Article  CAS  Google Scholar 

  2. Watanabe S, Yaginuma R, Ikejima K, Miyazaki A (2008) Liver diseases and metabolic syndrome. J Gastroenterol 43:509–518

    Article  CAS  PubMed  Google Scholar 

  3. Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K (2010) Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 299:685–694

    Article  Google Scholar 

  4. Tran LT, Yuen VG, McNeil JH (2009) The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332:145–159

    Article  CAS  PubMed  Google Scholar 

  5. Radziuk J, Pye S (2007) The liver, glucose homeostasis, and insulin action in type 2 diabetes mellitus. In: Hansen BC, Bray GA (eds) Contempory endocrinology: the metabolic syndrome: epidemiology, clinical treatment and underlying mechanisms. Humana Press, New York, pp 343–371

    Google Scholar 

  6. Seven A, Guzel S, Seymen O, Civelek S, Bolayirh M, Uncu M, Burcak G (2004) Effect of vitamin E supplementation on oxidative stress in streptozotocin induced diabetic rats: investigation of liver and plasma. Yonsei Med J 45:703–710

    Article  CAS  PubMed  Google Scholar 

  7. Kelley GL, Allan G, Azhar S (2004) High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology 145:548–555

    Article  CAS  PubMed  Google Scholar 

  8. Xiao J, Fai So K, Liong EC, Tipoe GL (2013) Recent advances in the herbal treatment of non-alcoholic fatty liver disease. J Tradit Complement Med 3:88–94

    Article  PubMed Central  PubMed  Google Scholar 

  9. Howes MJ, Simmonds MS (2014) The role of phytochemicals as micronutrients in health and disease. Curr Opin Clin Nutr Metab Care 17:558–566

    Article  CAS  PubMed  Google Scholar 

  10. Kato H, Kanaoka M, Yano S, Kobayashi M (1995) 3-Monoglucuronyl-glycyrrhetinic acid is a major metabolite that causes licorice-induced pseudoaldosteronism. J Clin Endocrinol Metab 80:1929–1933

    CAS  PubMed  Google Scholar 

  11. Serra A, Uehlinger DE, Ferrari P, Disk B, Frey BM, Frey FJ, Voqt B (2002) Glycyrrhetinic acid decreases plasma potassium concentrations in patients with anuria. J Am Soc Nephrol 13:191–196

    CAS  PubMed  Google Scholar 

  12. Glavac NK, Kreft S (2012) Excretion profile of glycyrrhizin metabolite in human urine. Food Chem 131:305–308

    Article  Google Scholar 

  13. Yu J, Jiang YS, Jiang Y, Peng YF, Sun Z, Dai XN, Cao QT, Sun YM, Han JC, Gao YJ (2014) Targeted metabolomic study indicating glycyrrhizin’s protection against acetaminophen-induced liver damage through reversing fatty acid metabolism. Phytother Res 28:933–936

    Article  CAS  PubMed  Google Scholar 

  14. Fernando HA, Chandramouli C, Rosli D, Lam YL, Yong ST, Yaw HP, Ton SH, Kadir KA, Sainsbury A (2014) Glycyrrhizic acid can attenuate metabolic deviations caused by a High-sucrose diet without causing water retention in male Sprague-Dawley rats. Nutrients 6:4856–4871

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wang W, Zhao F, Fang Y, Li X, Shen L, Cao T, Zhu H (2013) Glycyrrhizin protects against porcine endotoxemia through modulation of systemic inflammatory response. Crit Care 17:R44. doi:10.1186/cc12558

    Article  PubMed Central  PubMed  Google Scholar 

  16. Chia YY, Liong SY, Ton SH, Kadir KB (2012) Amelioration of glucose homeostasis by glycyrrhizic acid through gluconeogenesis rate-limiting enzymes. Eur J Pharmacol 677:197–202

    Article  CAS  PubMed  Google Scholar 

  17. Xu-ying W, Ming L, Xiao-dong L, Ping H (2009) Hepatoprotective and anti-hepatocarcinogenic effects of glycyrrhizin and matrine. Chem Biol Int 181:15–19

    Article  Google Scholar 

  18. Nagai T, Egashira T, Kudo Y, Yamanaka Y, Shimada T (1992) Attenuation of dysfunction in the ischemia-reperfused liver by glycyrrhizin. Jpn J Pharmacol 58:209–218

    Article  CAS  PubMed  Google Scholar 

  19. Mizoguchi Y, Katoh H, Tsutsui H, Yamamoto S, Morisawa S (1985) Protection of liver cells from experimentally induced liver cell injury by glycyrrhizin. Gastroenterol Jpn 20:99–103

    CAS  PubMed  Google Scholar 

  20. Sen S, Roy M, Chakraborti AS (2011) Ameliorative effect of glycyrrhizin on streptozotocin-induced diabetes in rats. J Pharm Pharmacol 63:287–296

    Article  CAS  PubMed  Google Scholar 

  21. Kalaiarasi P, Pugalendi KV (2009) Antihyperglycemic effect of 18β-glycyrrhetinic acid, aglycone of glycyrrhizin, on streptozotocin-diabetic rats. Eur J Pharmacol 606:269–273

    Article  CAS  PubMed  Google Scholar 

  22. Eu CH, Lim WY, Ton SH, Kadir KA (2010) Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats. Lipids Health Dis. doi:10.1186/1476-511X-9-81

    PubMed Central  PubMed  Google Scholar 

  23. Chandramouli C, Ting YS, Lyn LY, Ha TS, Kadir KA (2011) Glycyrrhizic acid improves lipid and glucose metabolism in high-sucrose-fed rats. J Endocrinol Metab 1:125–141

    CAS  Google Scholar 

  24. Sil R, Ray D, Chakraborti AS (2013) Glycyrrhizin ameliorates insulin resistance, hyperglycemia, dyslipidemia and oxidative stress in fructose-induced metabolic syndrome-X in rat model. Indian J Exp Biol 51:129–138

    CAS  PubMed  Google Scholar 

  25. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    CAS  PubMed  Google Scholar 

  26. Thambidorai D, Bachawat BK (1977) Purification and properties of brain alkaline phosphatase. J Neurochem 29:503–512

    Article  Google Scholar 

  27. Amador E, Wacker W (1962) Serum glutamic oxalacetic transaminase activity. A new modification and an analytical assessment of current assay techniques. Clin Chem 8:343–350

    CAS  PubMed  Google Scholar 

  28. Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagents. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  30. Nandhini AT, Balakrishnan SD, Anuradha CV (2002) Taurine improves lipid profile in rats fed a high fructose-diet. Nutr Res 22:343–354

    Article  CAS  Google Scholar 

  31. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  32. Levine RC, Garland D, Oliver CN, Amiei A, Climent I, Lanz A, Ahn B, Shalleil SO, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  33. Nakayama H, Mitsuhashi T, Kuwajima S, Aoki S, Kuroda Y, Itoh T, Nakagawa S (1993) Immunochemical detection of advanced glycation end products in lens crystallins from streptozotocin-induced diabetic rat. Diabetes 42:345–350

    Article  CAS  PubMed  Google Scholar 

  34. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  PubMed  Google Scholar 

  35. Rotruck JJ, Pope AL, Gantter HE, Swanson AB (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  36. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  37. Kim HY, Okubo T, Juneja LR, Yokozawa T (2010) The protective role of amla (Emblica officinalis Gaertn.) against fructose-induced metabolic syndrome in a rat model. Br J Nutr 103:502–512

    Article  CAS  PubMed  Google Scholar 

  38. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137

    Article  CAS  PubMed  Google Scholar 

  39. Cohen G, Farooqui R, Kesler N (1997) Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci 94:4890–4894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Luo J, Shi R (2005) Acrolein induces oxidative stress in brain mitochondria. Neurochem Int 46:243–252

    Article  CAS  PubMed  Google Scholar 

  41. Sellins KS, Cohen JJ (1987) Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206

    CAS  PubMed  Google Scholar 

  42. Sarkar MK, Sil PC (2010) Prevention of tertiary butyl hydroperoxide induced oxidative impairment and cell death by a novel antioxidant protein molecule isolated from the herb, Phyllanthus niruri. Toxicol Vitro 24:1711–1719

    Article  CAS  Google Scholar 

  43. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′ tetraethylbenzimidazolylcarbocyanine iodide (JC-1). Biochem. Biophys Res Commun 197:40–45

    Article  CAS  PubMed  Google Scholar 

  44. Preece A (1972) A manual for histologic technicians. Little, Brown and Co, Boston

    Google Scholar 

  45. Isbrucker RA, Burdock GA (2006) Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol 46:167–192

    Article  CAS  PubMed  Google Scholar 

  46. Yamamura Y, Santa T, Kotaki H, Uchino K, Sawada Y, Iga T (1995) Administration-route dependency of absorption of glycyrrhizin in rats: intraperitoneal administration dramatically enhanced bioavailability. Biol Pharm Bull 18:337–341

    Article  CAS  PubMed  Google Scholar 

  47. Zhai D, Zhao Y, Chen X, Guo J, He H, Yu Q, Yang J, Davey AK, Wang J (2007) Protective effect of glycyrrhizin, glycyrrhetic acid and matrine on acute cholestasis induced by alpha-naphthyl isothiocyanate in rats. Planta Med 73:128–133

    CAS  PubMed  Google Scholar 

  48. Yogalakshmi B, Bhuvaneswari S, Sreeja S, Anuradha CV (2014) Grape seed proanthocyanidins and metformin act by different mechanisms to promote insulin signaling in rats fed high calorie diet. J Cell Commun Signal 8:13–22

    Article  PubMed Central  PubMed  Google Scholar 

  49. Sivakumar AS, Anuradha CV (2011) Effect of galangin supplimentation on oxidative damage and inflammatory changes in fructose-fed rat liver. Chem Biol Interact 193:141–148

    Article  CAS  PubMed  Google Scholar 

  50. Rajasekar P, Viswanathan P, Anuradha CV (2008) Beneficial impact of L-carnitine in liver: a study in a rat model of syndrome X. Amino Acids 35:475–483

    Article  CAS  PubMed  Google Scholar 

  51. Kowaltowski AJ, De Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343

    Article  CAS  PubMed  Google Scholar 

  52. Gopalakrishna R, Jaken S (2000) Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28:1349–1361

    Article  CAS  PubMed  Google Scholar 

  53. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945

    Article  CAS  PubMed  Google Scholar 

  54. Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    Article  CAS  PubMed  Google Scholar 

  55. Ruderman NB, Williamson JR, Brownlee M (1992) Glucose and diabetic vascular disease. FASEB J 6:2905–2914

    CAS  PubMed  Google Scholar 

  56. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503

    Article  CAS  PubMed  Google Scholar 

  57. Baldwin AS (2001) The transcription factor NF-kB and human disease. J Clin Invest 107:3–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Tomlinson DR (1999) Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia 42:1271–1281

    Article  CAS  PubMed  Google Scholar 

  59. Verzola D, Bertolotto MB, Villaggio B, Ottonello L, Dallegri F, Frumento G, Berruti V, Gandolfo MT, Garibotto G, Deferran G (2002) Taurine prevents apoptosis induced by high glucose in human tubule renal cells. J Invest Med 50:443–451

    Article  CAS  Google Scholar 

  60. Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD, Chen LB (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88:3671–3675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Packard BZ, Toptygin DD, Komoriya A, Brand L (1996) Profluorescent protease substrates: intramolecular dimmers described by the exciton model. Proc Natl Acad Sci USA 93:11640–11645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis-flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods 184:39–51

    Article  CAS  PubMed  Google Scholar 

  63. Mukhopadhyay S, Farver CF, Vaszar LT, Dempsey OJ, Popper HH, Mani H, Capelozzi VL, Fukuoka J, Kerr KM, Zeren EH, Iyer VK, Tanaka T, Narde I, Nomikos A, Gumurdulu D, Arava S, Zander DS, Tazelaar HD (2012) Causes of pulmonary granulomas: a retrospective study of 500 cases from seven countries. J Clin Pathol 65:51–57

    Article  PubMed  Google Scholar 

  64. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A (2003) Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 52:2795–2804

    Article  CAS  PubMed  Google Scholar 

  65. Ramasamy R, Vannucci SJ, Yan SSD, Herold K, Yan SF, Schmidt M (2005) Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15:16R–28R

    Article  CAS  PubMed  Google Scholar 

  66. Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol JP, Cros G, Azay J (2005) Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis 179:43–49

    Article  CAS  PubMed  Google Scholar 

  67. Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84:705–712

    Article  CAS  PubMed  Google Scholar 

  68. Li Q, Verma IM (2002) NF-kB regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  CAS  PubMed  Google Scholar 

  69. Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, Haegernan G (2003) Transcriptional activation of the NF-kappa B p65 subunit by mitogen- and stress activated protein kinase-1 (MSK1). EMBO J 22:1313l–1324l

    Article  Google Scholar 

  70. Bertolini A, Ottani A, Sandrini M (2002) Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr Med Chem 9:1033–1043

    Article  CAS  PubMed  Google Scholar 

  71. Trinchieri G (1994) Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-Helper cells type 1 and cytotoxic lymphocytes. Blood 84:4006–4027

    Google Scholar 

  72. Gwak GY, Moon TG, Lee DH, Yoo BC (2012) Glycyrrhizin attenuates HMGB1-induced hepatocyte apoptosis by inhibiting the p38-dependent mitochondrial pathway. World J Gastroenterol 18:679–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Mollica L, Marchis FD, Spitaleri A, Dallacosta C, Pennacchini D, Zamai M, Agresti A, Trisciuoglio L, Musco G, Bianchi ME (2007) Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol 14:431–441

    Article  CAS  PubMed  Google Scholar 

  74. Sitia G, Iannacone M, Müller S, Bianchi ME, Guidotti LG (2007) Treatment with HMGB1 inhibitors diminishes CTL-induced liver disease in HBV transgenic mice. J Leukoc Biol 81:100–107

    Article  CAS  PubMed  Google Scholar 

  75. Keeble JA, Gilmore AP (2007) Apoptosis commitment-translating survival signals into decisions on mitochondria. Cell Res 17:976–984

    Article  CAS  PubMed  Google Scholar 

  76. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Ishak KG (1995) Granulomas in the liver. Adv Pathol Lab Med 8:247–361

    Google Scholar 

Download references

Acknowledgments

R. S received research fellowship from University Grants Commission (UGC), India. D. R received research fellowship from Council of Scientific and Industrial Research (CSIR), India. Assistances from the Departmental Special Assistance Programme of UGC and Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta are gratefully acknowledged.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Sankar Chakraborti.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sil, R., Ray, D. & Chakraborti, A.S. Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model. Mol Cell Biochem 409, 177–189 (2015). https://doi.org/10.1007/s11010-015-2523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2523-y

Keywords

Navigation