Skip to main content

Advertisement

Log in

Cyclooxygenase-2 is Upregulated in Copper-Deficient Rats

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Copper deficiency inactivates Cu/Zn-SOD and promotes accumulation of reactive oxygen species. This process likely impairs nitric oxide (NO)-mediated relaxation as well as triggers vascular inflammation. The current study was designed to determine whether COX-2, a proinflammatory protein, expression and activity are upregulated in the oxidative environment associated with inadequate Cu. Weanling male Sprague Dawley rats were fed purified diets which were either Cu-adequate (Cu-A); Cu-marginal (Cu-M), Cu-deficient (Cu-D), or the Cu-D diet combined with the SOD mimetic Tempol (Cu-D/T; 1 mM in drinking water) for 4 weeks. COX-2 protein, PGE2 (COX-2 metabolite) and isoprostanes (index of oxidative stress) were all higher in the Cu-D group vs Cu-A group, but no significant differences occurred between the Cu-M and Cu-A groups. Tempol protected against an attenuation of NO-mediated vasodilation in the Cu-D rats but did not prevent the elevation of PGE2 or isoprostanes. Our data suggest a role for copper as a modulator of oxidative stress and inflammation independent of SOD activity or NO-derived oxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gordon, S. A., D. Lominadze, J. T. Saari, A. B. Lentsch, and D. A. Schuschke. 2005. Impaired deformability of copper-deficient neutrophils. Exp. Biol. Med. 230:543–548.

    CAS  Google Scholar 

  2. Lominadze, D., J. T. Saari, S. S. Percival, and D. A. Schuschke. 2004. Proinflammatory effects of copper deficiency on neutrophils and lung endothelial cells. Immunol. Cell Biol. 82:231–238.

    Article  PubMed  CAS  Google Scholar 

  3. Lentsch, A. B., A. Kato, J. T. Saari, and D. A. Schuschke. 2001. Augmented metalloproteinase activity and acute lung injury in copper deficient rats. Am. J. Physiol. 281:L387–L393.

    CAS  Google Scholar 

  4. Schuschke, D. A., S. S. Percival, D. Lominadze, J. T. Saari, and A. B. Lentsch. 2002. Tissue-specific ICAM-1 expression and neutrophil transmigration in the copper-deficient rat. Inflammation. 26:297–303.

    Article  PubMed  CAS  Google Scholar 

  5. Schuschke, D. A., J. T. Saari, and F. N. Miller. 1994. The role of the mast cell in acute inflammatory responses of copper deficient rats. Agents Actions. 42:19–24.

    Article  PubMed  CAS  Google Scholar 

  6. Dalle Lucca, J. J., J. T. Saari, and D. A. Schuschke. 2002. Neointima formation in the rat carotid artery is exacerbated by dietary copper deficiency. Exp. Biol Med. 227:487–491.

    CAS  Google Scholar 

  7. Warren, J. S., K. R. Yabroff, D. G. Remick, S. L. Kunkel, S. W. Chensue, R. G. Kunkel, K. J. Johnson, and P. A. Ward. 1989. Tumor necrosis factor participates in the pathogenesis of acute immune complex alveolitis in the rat. J. Clin. Invest. 84:1873–1882.

    Article  PubMed  CAS  Google Scholar 

  8. Azevedo, L. C. P., M. A. Pedro, L. C. Souza, H. P. de Souza, M. Janiszewski, P. L. da Luz, and F. R. M. Laurindo. 2000. Oxidative stress as a signaling mechanism of the vascular response to injury: the redox hypothesis of restenosis. Cardiovasc. Res. 47:436–445.

    Article  PubMed  CAS  Google Scholar 

  9. Morita-Fujimura, Y., M. Fujimura, Y. Gasche, J. C. Copin, and P. H. Chan. 2000. Overexpression of copper and zinc superoxide dismutase in transgenic mice prevents the induction and activation of matrix metalloproteinases after cold injury-induced brain trauma. J. Cereb. Blood Flow Metab. 20:130–138.

    Article  PubMed  CAS  Google Scholar 

  10. O’Donovan, D. A., C. J. Kelly, H. Abdih, D. Bouchier-Hayes, R. W. G. Watson, H. P. Redmond, H. P. Burke, and D. A. Bouchier-Hayes. 1995. Role of nitric oxide in lung injury associated with experimental acute pancreatitis. Br. J. Surg. 82:1122–1126.

    Article  PubMed  Google Scholar 

  11. Schuschke, D. A., J. C. Falcone, J. T. Saari, J. T. Fleming, S. S. Percival, S. A. Young, J. M. Pass, and F. N. Miller. 2000. Endothelial cell calcium mobilization to acetylcholine is attenuated in copper-deficient rats. Endothelium. 7:83–92.

    PubMed  CAS  Google Scholar 

  12. Falcone, J. C., D. Lominadze, W. T. Johnson, and D. A. Schuschke. 2008. Endothelial cell-derived nitric oxide mobilization is attenuated in copper-deficient rats. Appl. Physiol. Nutr. Metab. 33:1073–1078.

    Article  PubMed  CAS  Google Scholar 

  13. Tomida, T., Y. Numaguchi, Y. Nishimoto, M. Tsuzuki, Y. Hayashi, H. Imai, H. Matsui, and K. Okumura. 2003. Inhibition of COX-2 prevents hypertension and proteinuria associated with a decrease of \({\text{8 - iso - PGF}}_{{2\alpha }} \). Hypertension. 21:601–609.

    Article  CAS  Google Scholar 

  14. Lominadze, D., D. A. Schuschke, I. G. Joshua, and W. L. Dean. 2002. Increased ability of erythrocytes to aggregate in spontaneously hypertensive rats. Clin. Exp. Hypertens. 24:397–406.

    Article  PubMed  Google Scholar 

  15. Morrow, J. D. 2005. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler. Thromb. Vasc. Biol. 25:279–286.

    Article  PubMed  CAS  Google Scholar 

  16. Adeagbo, A. S. O., X. Zhang, D. Patel, I. G. Joshua, Y. Wang, X. Sun, I. N. Igbo, and M. A. Oriowo. 2005. Cyclo-oxygenase-2, endothelium and aortic reactivity during deoxycortisone acetate salt-induced hypertension. J. Hypertens. 23:1025–1036.

    Article  PubMed  CAS  Google Scholar 

  17. Kalea, A. Z., D. A. Schuschke, P. D. Harris, and D. J. Klimis-Zacas. 2006. Cyclo-oxygenase inhibition restores the attenuated vasodilation in manganese-deficient rat aorta. J. Nutr. 136:1–6.

    Google Scholar 

  18. Saari, J. T. 2000. Copper deficiency and cardiovascular disease: role of peroxidation, glycation and nitration. Can. J. Physiol. Pharmacol. 78:848–855.

    Article  PubMed  CAS  Google Scholar 

  19. Lynch, S. M., and J. J. Strain. 1989. Effects of copper deficiency on hepatic and cardiac antioxidant enzyme activities in lactose- and sucrose-fed rats. Br. J. Nutr. 61:345–354.

    Article  PubMed  CAS  Google Scholar 

  20. Prohaska, J. R. 1991. Changes in Cu,Zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase and glutathione transferase activites in copper-deficient mice and rats. J. Nutr. 121:355–363.

    PubMed  CAS  Google Scholar 

  21. Nelson, S. K., C.-J. Huang, M. M. Mathias, and K. G. D. Allen. 1992. Copper-marginal and copper-deficient diets decrease aortic prostacyclin production and copper-dependent superoxide dismutase activity, and increase aortic lipid peroxidation in rats. J. Nutr. 122:2101–2108.

    PubMed  CAS  Google Scholar 

  22. Sukalski, K. A., T. P. LaBerge, and W. T. Johnson. 1997. In vivo oxidative modification of erythrocyte membrane proteins in copper deficiency. Free Radic. Biol. Med. 22:835–842.

    Article  PubMed  CAS  Google Scholar 

  23. Saari, J. T., F. D. Dickerson, and M. P. Habib. 1990. Ethane production in copper-deficient rats. Proc. Soc. Exp. Biol. Med. 195:30–33.

    PubMed  CAS  Google Scholar 

  24. Rayssiguier, Y., E. Gueux, L. Bussiere, and A. Mazur. 1993. Copper deficiency increases the susceptibility of lipoproteins and tissue to peroxidation in rats. J. Nutr. 123:1343–1348.

    PubMed  CAS  Google Scholar 

  25. Saari, J. T., A. M. Bode, and G. M. Dahlen. 1995. Defects of copper deficiency in rats are modified by dietary treatments that affect glycation. J. Nutr. 125:2925–2934.

    PubMed  CAS  Google Scholar 

  26. Schuschke, D. A., J. T. Saari, and F. N. Miller. 1995. A role for dietary copper in nitric-oxide mediated vasodilation. Microcirculation. 2:371–376.

    Article  PubMed  CAS  Google Scholar 

  27. Kang, Y. J., Z. X. Zhou, H. Wu, G. W. Wang, J. T. Saari, and J. B. Klein. 2000. Metallothionein inhibits myocardial apoptosis in copper-deficient mice: role of atrial natriuretic peptide. Lab Invest. 80:745–757.

    PubMed  CAS  Google Scholar 

  28. Samuelsson, B., R. Morgenstern, and P.-J. Jakobsson. 2007. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol. Rev. 59:207–224.

    Article  PubMed  CAS  Google Scholar 

  29. Adeagbo, A. S. O., D. Patel, A. Iddrissu, J. Walker, I. G. Joshua, D. A. Schuschke, and Y. Wang. 2003. NS-398, a selective cyclooygenase-2 blocker, acutely inhibits receptor-mediated contractions of rat aorta: role of endothelium. Eur. J. Pharmacol. 458:145–154.

    Article  PubMed  CAS  Google Scholar 

  30. Henrion, D., E. Dechaux, F. J. Dowell, J. Maclour, J.-L. Samuel, B. I. Lévy, and J.-B. Michel. 1997. Alteration of flow-induced dilatation in mesenteric resistance arteries of L-NAME treated rats and its partial association with induction of cyclo-oxygenase-2. Br. J. Pharmacol. 121:83–90.

    Article  PubMed  CAS  Google Scholar 

  31. Lynch, S. M., B. Frei, J. D. Morrow, L. J. Roberts, A. Xu, T. Jackson, R. Reyna, L. M. Klevay, J. A. Vita, and J. F. Keaney. 1997. Vascular superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation. Arterioscler. Thromb. Vasc. Biol. 17:2975–2981.

    PubMed  CAS  Google Scholar 

  32. Fang, X., S. A. Moore, J. O. Nwankwo, N. L. Weintraub, L. W. Oberley, G. D. Snyder, and A. A. Spector. 2000. Induction of cyclooxygenase-2 by overexpression of the human catalase gene in cerebral microvascular endothelial cells. J. Neurochem. 75:614–623.

    Article  PubMed  CAS  Google Scholar 

  33. Yang, T., A. Zhang, M. Honeggar, D. E. Kohan, D. Mizel, K. Sanders, J. R. Hoidal, J. P. Briggs, and J. B. Schnermann. 2005. Hypertonic induction of COX-2 in collecting duct cells by reactive oxygen species of mitochondrial origin. J. Biol. Chem. 280:34966–34973.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sharon Gordon for her expert technical assistance. This study was supported by National Institute of Diabetes and Digestive and Kidney Diseases Grant DK-55030. The US Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer, and all agency services are available without discrimination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale A. Schuschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuschke, D.A., Adeagbo, A.S.O., Patibandla, P.K. et al. Cyclooxygenase-2 is Upregulated in Copper-Deficient Rats. Inflammation 32, 333–339 (2009). https://doi.org/10.1007/s10753-009-9140-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9140-4

KEY WORDS

Navigation