Skip to main content
Log in

Copper nanoparticles modify the blood plasma antioxidant status and modulate the vascular mechanisms with nitric oxide and prostanoids involved in Wistar rats

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

We aimed to analyze whether a diet supplemented with a standard dose of copper (Cu) in the form of nanoparticles, as an alternative to carbonate, exerts beneficial effects within the vasculature and improves the blood antioxidant status.

Methods

Male Wistar rats were fed for 8 weeks with a diet supplemented with Cu (6.5 mg Cu/kg in the diet) either as nanoparticles (40 nm diameter) or carbonate — the control group. Moreover, a negative control was not supplemented with Cu. At 12 weeks of age, blood samples, internal organs and thoracic aorta were taken for further analysis. Blood antioxidant mechanism was measured together with Cu and Zn.

Results

Diet with Cu as nanoparticles resulted in an elevated catalase activity and ferric reducing ability of plasma, however decreased Cu (plasma), and ceruloplasmin (Cp) compared to carbonate. The participation of vasoconstrictor prostanoid was increased, as indomethacin did not modify the acetylcholine (ACh)-induced response. Arteries from Cu nanoparticle and carbonate rats exhibited a reduced maximal contraction to potassium chloride and an increased response to noradrenaline. The endothelium-dependent vasodilation to ACh was enhanced while exogenous NO donor, sodium nitroprusside, did not modify the vascular response. Down-regulation of BKCa channels influenced hyperpolarizing mechanism. The superoxide dismutase and HDL-cholesterol were decreased opposite to an increased lipid hydroperoxides, malondialdehyde, Cu (plasma and liver) and Cp.

Conclusion

Despite the increased antioxidant capacity in blood of Cu nanoparticle fed rats, vasoconstrictor prostanoids and NO are involved in vascular regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACh:

acetylcholine

ANOVA:

analysis of variance

CAT:

catalase

CCRC:

cumulative concentration-response curve

COX:

cyclooxygenase

Cp:

ceruloplasmin

Cu:

copper

CuD:

copper deficient

CuNPs:

copper nanoparticles

Emax:

maximal response values

FRAP:

ferric reducing antioxidant power

HDL:

high density lipoprotein

K+:

potassium

KATP:

ATP-dependent potassium channels

KCa:

calcium-dependent potassium channels

KHS:

Krebs-Henseleit solution

LDL:

low density lipoprotein

L-NAME:

Nω-Nitro-L arginine methyl ester

LOOH:

lipid hydroperoxides

MDA:

malondialdehyde

NA:

noradrenaline

NO:

nitric oxide

NOS:

nitric oxide synthase

pD2:

drug concentration exhibiting 50% of the Emax expressed as negative log molar

ROS:

reactive oxygen species

SEM:

standard error of the mean

SNP:

sodium nitroprusside

SOD:

superoxide dismutase

TG:

triglycerides

Zn:

zinc

References

  1. Majewski M, Kozlowska A, Thoene M, Lepiarczyk E, Grzegorzewski WJ. Overview of the role of vitamins and minerals on the kynurenine pathway in health and disease. J Physiol Pharmacol 2016;67(1):3–19.

    CAS  PubMed  Google Scholar 

  2. Majewski M, Kasica N, Jakimiuk A, Podlasz P. Toxicity and cardiac effects of acute exposure to tryptophan metabolites on the kynurenine pathway in early developing zebrafish (Danio rerio) embryos. Toxicol Appl Pharmacol 2018;341:16–29, doi: https://doi.org/10.1016/j.taap.2018.01.004.

    Article  CAS  Google Scholar 

  3. Wang T, Yu WG, Powell WS. Formation of monohydroxy derivatives of arachidonic acid, linoleic acid, and oleic acid during oxidation of low density lipoprotein by copper ions and endothelial cells. J Lipid Res 1992;33(4):525–37.

    CAS  PubMed  Google Scholar 

  4. Cholewińska E, Juśkiewicz J, Ognik K. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in a rat model. J Trace Elem Med Biol 2018;48:111–7, doi: https://doi.org/10.1016/j.jtemb.2018.03.017.

    Article  Google Scholar 

  5. Fukai T, Ushio-Fukai M, Kaplan JH. Copper transporters and copper chaperones: roles in cardiovascular physiology and disease. Am J Physiol Cell Physiol 2018;315(2):186–201, doi: https://doi.org/10.1152/ajpcell.00132.2018.

    Article  Google Scholar 

  6. Sakurai H. Copper compounds ameliorate cardiovascular dysfunction and diabetes in animals. Yakugaku Zasshi 2012;132(3):285–91, doi: https://doi.org/10.1248/yakushi.132.285.

    Article  CAS  Google Scholar 

  7. Schuschke DA, Adeagbo AS, Patibandla PK, Egbuhuzo U, Fernandez-Botran R, et al. Cyclooxygenase-2 is upregulated in copper-deficient rats. Inflammation 2009;32(5):333–9, doi: https://doi.org/10.1007/s10753-009-9140-4.

    Article  CAS  Google Scholar 

  8. Sharma AK, Kumar A, Taneja G, Nagaich U, Deep A, Rajput SK. Synthesis and preliminary therapeutic evaluation of copper nanoparticles against diabetes mellitus and -induced micro- (renal) and macro-vascular (vascular endothelial and cardiovascular) abnormalities in rats. RSC Adv 2016;6:36870–80, doi: https://doi.org/10.1039/c6ra03890e.

    Article  CAS  Google Scholar 

  9. Sharma AK, Kumar A, Sahu M, Sharma G, Datusalia AK, Rajput SK. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvasc Res 2018;120:59–66, doi: https://doi.org/10.1016/j.mvr.2018.06.003.

    Article  CAS  Google Scholar 

  10. Sharma AK, Kumar A, Taneja G, Nagaich U, Deep A, Datusalia AK, et al. Combined and individual strategy of exercise generated preconditioning and low dose copper nanoparticles serve as superlative approach to ameliorate ISO-induced myocardial infarction in rats. Pharmacol Rep 2018;70(4):789–95, doi: https://doi.org/10.1016/j.pharep.2018.02.023.

    Article  CAS  Google Scholar 

  11. Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F, et al. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 2007;175:102–10, doi: https://doi.org/10.1016/j.toxlet.2007.09.015.

    Article  CAS  Google Scholar 

  12. Böhmert L, Laux P, Luch A, Braeuning A, Lampen A. Nanomaterials in foodstuffs — toxicological properties and risk assessment. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017;60:722–7, doi: https://doi.org/10.1007/s00103-017-2559-0.

    Article  Google Scholar 

  13. Tang H, Xu M, Zhou X, Zhang Y, Zhao L, Ye G, et al. Acute toxicity and biodistribution of different sized copper nano-particles in rats after oral administration. Mater Sci Eng 2018;93:649–63, doi: https://doi.org/10.1016/j.msec.2018.08.032.

    Article  CAS  Google Scholar 

  14. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 2006;163:109–20, doi: https://doi.org/10.1016/j.toxlet.2005.10.003.

    Article  CAS  Google Scholar 

  15. Liu Y, Gao Y, Zhang L, Wang T, Wang J, Jiao F, et al. Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol 2009;9(11):6335–43.

    Article  CAS  Google Scholar 

  16. Trickler WJ, Lantz SM, Schrand AM, Robinson BL, Newport GD, Schlager JJ, et al. Effects of copper nanoparticles on rat cerebral microvessel endothelial cells. Nanomedicine 2012;7(6):835–46, doi: https://doi.org/10.2217/nnm.11.154.

    Article  CAS  Google Scholar 

  17. Cholewińska E, Ognik K, Fotschki B, Zduńczyk Z, Juśkiewicz J. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One 2018;13:e0197083, doi: https://doi.org/10.1371/journal.pone.0197083.

    Article  Google Scholar 

  18. Majewski M, Jurgoński A, Fotschki B, Juśkiewicz J. The toxic effects of monosodium glutamate (MSG) — The involvement of nitric oxide prostanoids and potassium channels in the reactivity of thoracic arteries in MSG-obese rats. Toxicol Appl Pharmacol 2018;359:62–9, doi: https://doi.org/10.1016/j.taap.2018.09.016.

    Article  CAS  Google Scholar 

  19. Majewski M, Ognik K, Zdunczyk P, Juskiewicz J. Effect of dietary copper nanoparticles versus one copper (II) salt: Analysis of vasoreactivity in a rat model. Pharmacol Rep 2017;69:1282–8, doi: https://doi.org/10.1016/j.pharep.2017.06.001.

    Article  CAS  Google Scholar 

  20. Tomaszewska E, Muszyński S, Ognik K, Dobrowolski P, Kwiecień M, Juśkiewicz J, et al. Comparison of the effect of dietary copper nanoparticles with copper (II) salt on bone geometric and structural parameters as well as material characteristics in a rat model. J Trace Elem Med Biol 2017;42:103–10, doi: https://doi.org/10.1016/j.jtemb.2017.05.002.

    Article  CAS  Google Scholar 

  21. Tomaszewska E, Dobrowolski P, Kwiecień M. Intestinal alterations, basal hematology, and biochemical parameters in adolescent rats fed different sources of dietary copper. Biol Trace Elem Res 2016;171(1):185–91, doi: https://doi.org/10.1007/s12011-015-0522-1.

    Article  CAS  Google Scholar 

  22. Aebi H. Catalase in vitro methods. Enzymol 1984;105:121–6, doi: https://doi.org/10.1016/S0076-6879(84)05016-3.

    Article  CAS  Google Scholar 

  23. Ognik K, Wertelecki T. Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. Journal App Poul Res 2012;21(2):259–71, doi: https://doi.org/10.3382/japr.2011-00366.

    Article  CAS  Google Scholar 

  24. Bureau I, Gueux E, Mazur A, Rock E, Roussel AM, Rayssiguier Y. Female rats are protected against oxidative stress during copper deficiency. J Am Coll Nutr 2003;22(3):239–46.

    Article  CAS  Google Scholar 

  25. Zhou Z, Johnson WT, Kang YJ. Regression of copper-deficient heart hypertrophy: reduction in the size of hypertrophic cardiomyocytes. J Nutr Biochem 2009;20(8):621–8, doi: https://doi.org/10.1016/j.jnutbio.2008.06.007.

    Article  CAS  Google Scholar 

  26. Guo CH, Wang CL. Effects of zinc supplementation on plasma copper/zinc ratios oxidative stress and immunological status in hemodialysis patients. Int J Med Sci 2013;10(1):79–89, doi: https://doi.org/10.7150/ijms.5291.

    Article  CAS  Google Scholar 

  27. Russo AJ. Decreased zinc and increased copper in individuals with anxiety. Nutr Metab Insights 2011;4:1–5, doi: https://doi.org/10.4137/NMI.S6349.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Al-Bayati MA, Jamil DA, Al-Aubaidy HA. Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy. N Am J Med Sci 2015;7(2):41–6, doi: https://doi.org/10.4103/1947-2714.152077.

    Article  Google Scholar 

  29. Fields M, Ferretti RJ, Smith [81_TD$DIFF][51_TD$DIFF]Jr JC, Reiser S. Impairment of glucose tolerance in copper-deficient rats: dependency on the type of dietary carbohydrate. J Nutr 1984;114(2):393–7, doi: https://doi.org/10.1093/jn/114.2.393.

    Article  CAS  Google Scholar 

  30. Lucas A, Grynberg A, Lacour B, Goirand F. Dietary n-3 polyunsaturated fatty acids and endothelium dysfunction induced by lysophosphatidylcholine in Syrian hamster aorta. Metabolism 2008;57(2):233–40, doi: https://doi.org/10.1016/j.metabol.2007.09.006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Majewski.

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majewski, M., Ognik, K. & Juśkiewicz, J. Copper nanoparticles modify the blood plasma antioxidant status and modulate the vascular mechanisms with nitric oxide and prostanoids involved in Wistar rats. Pharmacol. Rep 71, 509–516 (2019). https://doi.org/10.1016/j.pharep.2019.02.007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2019.02.007

Keywords

Navigation