Skip to main content
Log in

Mössbauer study of new functional metal/polymer nanocomposites with spatially oriented FeGa particles

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy has been applied to study the structure and magnetostriction interdependence of metall/polymer composites with spatially oriented FeGa particles in a polymer matrix. Composites were synthesized combining modified polyurethane with nanocrystalline mechanosynthesized particles of magnetostrictive FeGa composition through polymerization to achieve a considerable magnetostrictive response. To increase magnetoelastic effects a spatial particle arrangement in the polymer matrix was generated. The magnetostrictive composition of the mechanosynthesized particles has been determined by Mössbauer spectroscopy, X-ray diffraction and TEM at different stages of ball milling. The microstructure of the composites via the particle orientation in the polymer has been researched by SEM and Conversion Mössbauer spectroscopy with the registration of resonant X-rays. The spatial particle inhomogeneity and magnetic anisotropy have been analyzed in order to reveal the factors determining the functional properties of the manufactured composites. Three-fold enhancement of the magnetostrictive response for FeGa/polyurethane composites with non-standard magnetic anisotropy has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kickelbick G., (ed.): Hybrid materials. Synthesis, Characterization, and Application, p. 498. Wiley-VCH (2006)

  2. Nicolais, L., Carotenuto, G., (eds.): Metal-Polymer Nanocomposites, p. 320. Wiley (2005)

  3. Balaz, P.: Mechanochemistry in Nanoscience and Minerals Engineering, p. 413. Springer (2008)

  4. Lyakhov, N.Z., et al. (eds.): Mechanocomposites precursor for the creation of materials with new properties, p. 432. Novosibirsk. ISBN 978-5-7692-1108-9 (2010)

  5. Kiseleva, T.Yu., Novakova, A.A., et al.: Iron-based amorphous magnetic phase formation in the course of Fe and Fe2O3 mechanical activation. Solid State Phenom 152–153, 25–28 (2009). doi:10.4028/3-908454-13-1.25

    Article  Google Scholar 

  6. Kiseleva, T.Yu., Novakova, A.A., et al.: Mechanosynthesis of corundum ceramics/intermetallics nanocomposites. Advan. Mater. (in Russian) (6), 1–10 (2008)

  7. Kiseleva, T.Yu., Grigorieva, T.F., et al.: Iron and Indium interactions during mechanical attrition. J. Alloy. Comp. 383, 94–97 (2004). doi:10.1016/j.jallcom.2004.04.015

    Article  Google Scholar 

  8. Novakova, A.A., Khenkin, L.V., et al.: Formation of graphite encapsulated iron nanoparticles during mechanical activation and annealing analyzed by mössbauer spectroscopy. Hyperfine Interact. 189(1–3), 105–110 (2009). doi:10.1007/s10751-009-9934-7

    Article  ADS  Google Scholar 

  9. Novakova, A.A., Grigorieva, T.F., et al.: Fe(In) solid solution formation during mechanical attrition. J. Alloy. Comp. 434–435, 455–458 (2007). doi:10.1016/j.jallcom.2006.08.102. (SPEC. ISS.)

    Article  Google Scholar 

  10. Kiseleva, T.Yu., Novakova, A.A., et al.: Structural study of Fe-Al Structural study of Fe-Al nanomaterial produced by mechanical activation and self-propagating high-temperature synthesis. Moscow University Phys. Bull. 63(1), 55–60 (2008). doi:10.1007/s11972-008-1011-8

  11. Kiseleva, T., Novakova, A., et al.: Amorphous shell formarion on the Iron particles during mechanosynthesis in Fe2O3/Fe/(Ga,Al) mixtures. J. Solid State Phenom. 170, 139–143 (2011). doi:10.4028/www.scientific.net/SSP.170.139

    Article  Google Scholar 

  12. Kiseleva, T.Yu., Novakova, A.A., et al.: Mechanochemically induced formation of amorphous phase at oxide nanocomposite interfaces. J. Phys. Conf. Ser. 217(1) (2010). doi:10.1088/1742-6596/217/1/012106

  13. Polyakov, A.O., Kiseleva, T.Y., et al.: Step-by-step powder composite mechanosynthesis for functional nanoceramics. J. Phys. Conf. Ser. 217(1) (2010). doi:10.1088/1742-6596/217/1/012081

  14. Atulasimha, J., Flatau, A.B.: Topical review: A review of magnetostrictive iron-gallium alloys. Smart Mater. Struct. 20, 043001 (2011)

    Article  ADS  Google Scholar 

  15. Rafique, S., Cullen, J.R., et al.: Magnetic anisotropy of FeGa alloys. J. Appl. Phys. 95(11), 6939–694 (2004)

    Article  ADS  Google Scholar 

  16. Hristoforou, E., Ktena, A.: Magnetostriction and magnetostrictive materials. J. Magnet. Magnet. Mater. 316, 372–378 (2007)

    Article  ADS  Google Scholar 

  17. Okamoto, H.: The fe-ga (iron-gallium) system. Bull. Alloy Phase Diag. 11(6), 576–581 (1990). doi:10.1007/BF02841721

    Article  Google Scholar 

  18. Clark, A.E., Wun-Gogle, M., et al.: Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. IEEE Trans. Magn. 36, 3238–3240 (2000)

    Article  ADS  Google Scholar 

  19. Cao, H., Gehring, P.M., et al.: Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated galfenol (Fe1_xGax) alloys. Phys. Rev. Lett. 102, 127–201 (2009)

    Article  Google Scholar 

  20. Dobrzański, L.A., Wydrzyńska, A., et al.: Magnetostrictive properties of epoxy-bonded Tb0, 3Dy 0, 7Fe1,9 composites. J. Adv. Mater. Res. 89–91, 633–638 (2010). doi:10.4028/www.scientific.net/AMR.89-91.633

    Article  Google Scholar 

  21. Rusakov, V.S.: Mössbauer Spectroscopy of Local-Inhomogeneous Systems, p. 430. Almaty Publ. (2000)

  22. Grigor’eva, T.F., Kiseleva, T.Y., et al.: Study of the products of interaction between iron and gallium during mechanical activation. Phys. Metals Metallograph. 113(6), 575–582 (2012). doi:10.1134/S0031918X12060075

    Article  ADS  Google Scholar 

  23. Gaudet, J.M., Hatchard, T.D., et al.: Properties of Fe-Ga based powders prepared by mechanical alloying. J. Magnet. Magnet. Mater. 320, 821–829 (2007)

    Article  ADS  Google Scholar 

  24. Dunlap, R.A., McGraw, J.D., et al.: Mössbauer effect study of structural ordering in rapidly quenched Fe-Ga alloys. J. Magnet. Magnet. Mater. 305, 315–320 (2006)

    Article  ADS  Google Scholar 

  25. Newkirk, L.R., Tsuei, C.C.: Mössbauer study of hyperfine magnetic interactions in fe-ga solid solutions. J. Phys. Rev. B 4(11), 4046–4053 (1971). doi:10.1103/PhysRevB.4.4046

    Article  ADS  Google Scholar 

  26. Novakova, A.A., Smirnov, E.V., et al.: Magnetic anisotropy in Fe3O4—PVA nanocomposites as a result of Fe3O4-nanoparticles chains formation J. Magnet. Magnet. Mater. 300(1), e354–e356 (2006). doi:10.1016/j.jmmm.2005.10.119

  27. Novakova, A.A., Agladze, O.V., et al: Detection of anisotropy effects in compact nanocrystalline iron. J. Surf. Invest. X-Ray Synchrot. Neutron Techniq. 16(12), 1863–1867 (2001). ISSN: 10274510

    Google Scholar 

  28. Reicher, Y.L., Stolbov, O.V.: Modelling of magnetostrictive strain in soft magnetic elastomer. Comput. Contin. Mech. 2(2), 85–95 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Zholudev.

Additional information

Proceedings of the 32nd International Conference on the Applications of the Mössbauer Effect (ICAME 2013) held in Opatija, Croatia, 1–6 September 2013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zholudev, S.I., Kiseleva, T.Y. Mössbauer study of new functional metal/polymer nanocomposites with spatially oriented FeGa particles. Hyperfine Interact 226, 375–382 (2014). https://doi.org/10.1007/s10751-013-0957-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-013-0957-8

Keywords

Navigation