Skip to main content
Log in

Synthesis and characterization of uncoated and gold-coated magnetite nanoparticles

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We report on the synthesis and characterization of uncoated and gold coated magnetite nanoparticles. Structural characterizations, carried out using X-ray diffraction, confirm the formation of magnetite phase with a mean size of ~7 and ~8 nm for the uncoated and gold covered magnetite nanoparticles, respectively. The value of the gold coated Fe3O4 nanoparticles is consistent with the mean physical size determined from transmission electron microscopy images. Mössbauer spectra at room temperature are consistent with the thermal relaxation of magnetic moments mediated by particle-particle interactions. The 77 K Mössbauer spectra are modeled with four sextets. Those sextets are assigned to the signal of iron ions occupying the tetrahedral and octahedral sites in the core and shell parts of the particle. The room-temperature saturation magnetization value determined for the uncoated Fe3O4 nanoparticles is roughly ~60 emu/g and suggests the occurrence of surface effects such as magnetic disorder or the partial surface oxidation. These surface effects are reduced in the gold-coated Fe3O4 nanoparticles. Zero-field–cooled and field-cooled curves of both samples show irreversibilities which are consistent with a superparamagnetic behavior of interacting nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lima, Jr. E., Brandl, A.L., Arelaro, A.D., Goya, G.F.: J. Appl. Phys. 99, 083908 (2006)

    Article  Google Scholar 

  2. Zhou, X., Xu, W., Wang, Y., Kuang, Q., Shi, Y., Zhong, L., Zhang, Q.: J. Phys. Chem. C 114, 19607 (2010)

    Article  Google Scholar 

  3. Lyon, J.L., Fleming, D.A., Stone, M.B., Schiffer, P., Williams, M.E.: Nano Lett. 4, 719 (2004)

    Article  ADS  Google Scholar 

  4. Wu, W., He, Q., Chen, H., Tang, J., Nie, L.: Nanotechnology 18, 145609 (2007)

    Article  ADS  Google Scholar 

  5. Pal, S., Morales, M., Mukherjee, P., Srikanth, H.: J. Appl. Phys. 105, 07B504 (2009)

    Google Scholar 

  6. Korecki, J., Handke, B., Spiridis, N., Slezak, T., Flis-Kabulska, I., Haber, J.: Thin Solid Films 412, 14 (2002)

    Article  ADS  Google Scholar 

  7. Voogt, F.C., Fujii, T., Smulders, P.J.M., Niesen, L., James, M.A., Hibma, T.: Phys. Rev B 60, 11193 (1999)

    Article  ADS  Google Scholar 

  8. Hargrove, R.S., Kündig, W.: Solid State Comm. 8, 303 (1970)

    Article  ADS  Google Scholar 

  9. Goya, G.F., Berquó, T.S., Fonseca, F.C., Morales, M.P.: J. Appl. Phys. 94, 3520 (2003)

    Article  ADS  Google Scholar 

  10. Oshtrakh, M.I., Sepelák, V., Rodriguez, A.F.R., Semionkin, V.A., Ushakov, M.V., Santos, J.G., Silveira, L.B., Marmolejo, E.M., De Souza Parise, M., Morais, P.C.: Spectrochim. Acta, Part A 100, 94 (2013)

    Article  ADS  Google Scholar 

  11. Oshtrakh, M.I., Ushakov, M.V., Semenova, A.S., Kellerman, D.G., Šepelák, V., Rodriguez, A.F.R., Semionkin, V.A., Morais, P.C.: Hyperfine Interact (2013). doi:10.1007/s10751-012-0666-8

    Google Scholar 

  12. Loaiza, Ó.A., Jubete, E., Ochoteco, E., Cabañero, G., Grande, H., Rodríguez, J.: Biosens. Biolectron. 26, 2194 (2011)

    Article  Google Scholar 

  13. Cullity, B.D., Stock, S.R.: Elements of X-ray Diffraction, 3rd edn. Prentice-Hall, Upper Saddle River, NJ (2001)

    Google Scholar 

  14. Aragón, F.H., de Souza, P.E.N., Coaquira, J.A.H., Hidalgo, P., Gouvêa, D.: Physica B 407, 2601 (2012)

    Article  ADS  Google Scholar 

  15. Presniakov, I.A., Sobolev, A.V., Baranov, A.V., Demazeau, G., Rusakov, V.S.: J. Phys., Condens. Matter 18, 8943 (2006)

    Article  ADS  Google Scholar 

  16. Gee, S.H., Hong, Y.K., Erickson, D.W., Park, M.H., Sur, J.C.: J. Appl. Phys. 93, 7560 (2003)

    Article  ADS  Google Scholar 

  17. Morales, M.P., Veintemillas Verdaguer, S., Montero, M.I., Serna, C.J., Roig, A., Casas, Ll., Martínez, B., Sandiumenge, F.: Chem. Mater. 11, 3058 (1999)

    Article  Google Scholar 

  18. Cho, S.-J., Idrobo, J.-C., Olamit, J., Liu, K., Browning, N.D., Kauzlarich, S.M.: Chem. Mater. 17, 3181 (2005)

    Article  Google Scholar 

  19. Carpenter, E.E.: J. Magn. Magn. Mater. 225, 17 (2001)

    Article  ADS  Google Scholar 

  20. Coaquira, J.A.H., Vaccari, C.B., Tedesco, A.C., Morais, P.C.: IEEE Trans. Magn. 45, 4059 (2009)

    Article  ADS  Google Scholar 

  21. Mikhaylova, M., Kim, D.K., Bobrysheva, N., Osmolowsky, M., Semenov, V., Tsakalakos, T., Muhammed, M.: Langmuir 20, 2472 (2004)

    Article  Google Scholar 

  22. Jonsson, T., Mattsson, J., Djurberg, C., Khan, F.A., Nordblad, P., Svedlindh, P.: Phys. Rev. Lett. 75, 4138 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. H. Coaquira.

Additional information

Proceedings of the Thirteenth Latin American Conference on the Applications of the Mössbauer Effect, (LACAME 2012), Medellín, Colombia, 11–16 November 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

León-Félix, L., Chaker, J., Parise, M. et al. Synthesis and characterization of uncoated and gold-coated magnetite nanoparticles. Hyperfine Interact 224, 179–188 (2014). https://doi.org/10.1007/s10751-013-0857-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-013-0857-y

Keywords

Navigation