Skip to main content
Log in

The AEGIS experiment at CERN

Measuring the free fall of antihydrogen

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

After the first production of cold antihydrogen by the ATHENA and ATRAP experiments ten years ago, new second-generation experiments are aimed at measuring the fundamental properties of this anti-atom. The goal of AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is to test the weak equivalence principle by studying the gravitational interaction between matter and antimatter with a pulsed, cold antihydrogen beam. The experiment is currently being assembled at CERN’s Antiproton Decelerator. In AEGIS, antihydrogen will be produced by charge exchange of cold antiprotons with positronium excited to a high Rydberg state (n > 20). An antihydrogen beam will be produced by controlled acceleration in an electric-field gradient (Stark acceleration). The deflection of the horizontal beam due to its free fall in the gravitational field of the earth will be measured with a moiré deflectometer. Initially, the gravitational acceleration will be determined to a precision of 1%, requiring the detection of about 105 antihydrogen atoms. In this paper, after a general description, the present status of the experiment will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heckel, B., et al.: Adv. Space Res. 25, 1225 (2000). doi:10.1016/S0273-1177(99)00995-3

    Article  ADS  Google Scholar 

  2. Steigman, G.: Annu. Rev. Astron. Astrophys. 14, 339 (1976). doi:10.1146/annurev.aa.14.090176.002011

    Google Scholar 

  3. Fairbank, W.M., et al.: In: Bertotti, B. (ed.) International School of Physics “Enrico Fermi”, p. 310. Academic Press, New York (1974)

    Google Scholar 

  4. Holzscheiter, M.H., et al.: Nucl. Phys. A 558, 709c (1993). doi:10.1016/0375-9474(93)90432-W

    Article  ADS  Google Scholar 

  5. Amoretti, M., et al.: Nature 419, 456 (2002). doi:10.1038/nature01096

    Article  ADS  Google Scholar 

  6. Gabrielse, G., et al.: Phys. Rev. Lett. 89, 213401 (2002). doi:10.1103/PhysRevLett.89.213401

    Article  ADS  Google Scholar 

  7. Drobychev, G., et al.: Proposal to the SPS Experiments Committee CERN-SPSC-2007-017, CERN. http://cdsweb.cern.ch/record/1037532 (2007)

  8. Kellerbauer, A., et al.: Nucl. Instrum. Methods B 266, 351 (2008). doi:10.1016/j.nimb.2007.12.010

    Article  ADS  Google Scholar 

  9. Hémery, J.Y., Maury, S.: Nucl. Phys. A 655, c345 (1999). doi:10.1016/S0375-9474(99)00223-7

    Article  ADS  Google Scholar 

  10. Gidley, D.W., Peng, H.G., Vallery, R.S.: Annu. Rev. Mater. Res. 36, 49 (2006). doi:10.1146/annurev.matsci.36.111904.135144

    Article  ADS  Google Scholar 

  11. Mariazzi, S., et al.: Appl. Surf. Sci. 255, 191 (2008). doi:10.1016/j.apsusc.2008.05.207

    Article  ADS  Google Scholar 

  12. Vallery, R.S., Zitzewitz, P.W., Gidley, D.W.: Phys. Rev. Lett. 90, 203402 (2003). doi:10.1103/PhysRevLett.90.203402

    Article  ADS  Google Scholar 

  13. Mariazzi, S., Salemi, A., Brusa, R.S.: Phys. Rev. B 78, 085428 (2008). doi:10.1103/PhysRevB.78.085428

    Article  ADS  Google Scholar 

  14. Mariazzi, S., Bettotti, P., Brusa, R.S.: Phys. Rev. Lett. 104, 243401 (2010). doi:10.1103/PhysRevLett.104.243401

    Article  ADS  Google Scholar 

  15. Castelli, F., et al.: Phys. Rev. A 78, 052512 (2008). doi:10.1103/PhysRevA.78.052512

    Article  ADS  Google Scholar 

  16. Cialdi, S., et al.: Nucl. Instrum. Methods B 269, 1527 (2011). doi:10.1016/j.nimb.2011.04.108

    Article  ADS  Google Scholar 

  17. Charlton, M.: Phys. Lett. A 143, 143 (1990). doi:10.1016/0375-9601(90)90665-B

    Article  ADS  Google Scholar 

  18. Hessels, E.A., Homan, D.M., Cavagnero, M.J.: Phys. Rev. A 57, 1668 (1998). doi:10.1103/PhysRevA.57.1668

    Article  ADS  Google Scholar 

  19. Storry, C.H., et al.: Phys. Rev. Lett. 93, 263401 (2004). doi:10.1103/PhysRevLett.93.263401

    Article  ADS  Google Scholar 

  20. Vliegen, E., Merkt, F.: J. Phys. B 39, L241 (2006). doi:10.1088/0953-4075/39/11/L03

    Article  ADS  Google Scholar 

  21. Vliegen, E., et al.: Phys. Rev. A 76, 023405 (2007). doi:10.1103/PhysRevA.76.023405

    Article  ADS  Google Scholar 

  22. Zehnder, L.: Z. Instrumentenkd. 11, 275 (1891)

    Google Scholar 

  23. Mach, L.: Z. Instrumentenkd. 12, 89 (1892)

    Google Scholar 

  24. Oberthaler, M.K., et al.: Phys. Rev. A 54, 3165 (1996). doi:10.1103/PhysRevA.54.3165

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to A. Kellerbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

The AEGIS Collaboration., Kellerbauer, A., Allkofer, Y. et al. The AEGIS experiment at CERN. Hyperfine Interact 209, 43–49 (2012). https://doi.org/10.1007/s10751-012-0583-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-012-0583-x

Keywords

Navigation