Skip to main content
Log in

Progress with the MPIK/UW-PTMS in Heidelberg

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The precise determination of the 3He/3H mass ratio, and hence the tritium β-decay endpoint energy E 0, is of relevance for the measurement of the electron anti-neutrino mass performed by the Karlsruhe Tritium Neutrino experiment (KATRIN). By determining this ratio to an uncertainty of 1 part in 1011, systematic errors of E 0 can be checked in the data analysis of KATRIN. To reach this precision, a Penning Trap Mass Spectrometer was constructed at the University of Washington and has been transferred to the Max Planck Institute for Nuclear Physics in Heidelberg at the end of 2008. Since then it is called MPIK/UW-PTMS. Special design features are the utilization of an external ion source and a double trap configuration. The external Penning ion source efficiently ionizes the helium and tritium gas and can give superior elimination of unwanted ion species compared to the previously utilized in-trap-ionization by electrons from a field-emission point. The design as a double Penning trap allows a faster measurement procedure. This should help to avoid problems resulting from long-term drifts in the experimental conditions. Additionally, the laboratory in Heidelberg was carefully prepared to have very stable environmental conditions. Experimental challenges and the first Heidelberg results with the new spectrometer are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukuda, Y., et al.: Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998)

    Article  ADS  Google Scholar 

  2. Lesgourgues, J., Pastor, S.: Massive neutrinos and cosmology. Phys. Rep. 429, 307–379 (2006)

    Article  ADS  Google Scholar 

  3. Avignone, III, F.T., Elliott, S.R., Engel, J.: Double beta decay, majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 80, 481–516 (2008)

    Article  ADS  Google Scholar 

  4. Otten, E.W., Weinheimer, C.: Neutrino mass limit from tritium β-decay. Rep. Prog. Phys. 71, 086201 (2008)

    Article  Google Scholar 

  5. Drexlin, G.: KATRIN-direct measurement of a sub-eV neutrino mass. Nucl. Phys. B Proc. Suppl. 145, 263–267 (2005)

    Article  Google Scholar 

  6. Otten, E.W., Bonn, J., Weinheimer, Ch.: The Q-value of tritium β-decay and the neutrino mass. Int. J. Mass Spectrom. 251, 173–178 (2006)

    Article  ADS  Google Scholar 

  7. Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1–78 (2006)

    Article  ADS  Google Scholar 

  8. Van Dyck, R.S. Jr., et al.: Ultraprecise atomic mass measurement of the α particle and 4He. Phys. Rev. Lett. 92, 220802/1 (2004)

    Article  Google Scholar 

  9. Rainville, S., Thompson, J.K., Pritchard, D.E.: An ion balance for ultra-high-precision atomic mass measurements. Science 303, 334–338 (2004)

    Article  ADS  Google Scholar 

  10. Nagy, Sz., et al.: On the Q-value of the tritium β-decay. Europhys. Lett. 74, 404–410 (2006)

    Article  ADS  Google Scholar 

  11. Van Dyck, R.S., Jr., et al.: The UW-PTMS: systematic studies, measurement progress,and future improvements. Int. J. Mass Spectrom. 251, 231–242 (2006)

    Article  Google Scholar 

  12. Pinegar, D.B.: Tools for a precise tritium to helium-3 mass comparison. PhD thesis, University of Washington, Seattle (2007)

  13. Van Dyck, R.S., Jr., et al.: Ultrastable superconducting magnet system for a Penning trap mass spectrometer. Rev. Sci. Instrum. 70, 1665–1671 (1999)

    Article  ADS  Google Scholar 

  14. Van Dyck, R.S. Jr., Zafonte, S.L., Schwinberg, P.B.: Ultra-precise mass measurements using the UW-PTMS. Hyperfine Interact. 132, 163–175 (2001)

    Article  ADS  Google Scholar 

  15. Gabrielse, G.: Why is sideband mass spectrometry possible with ions in a Penning trap. Phys. Rev. Lett. 102, 172501 (2009)

    Article  ADS  Google Scholar 

  16. Wineland, D.J., Dehmelt, H.G.: Principles of the stored ion calorimeter. J. Appl. Phys. 46, 919–930 (1975)

    Article  ADS  Google Scholar 

  17. Farnham, D.L., Van Dyck, R.S. Jr., Schwinberg, P.B.: Determination of the electron’s atomic mass and the proton/electron mass ratio via Penning trap mass spectroscopy. Phys. Rev. Lett. 75, 3598–3601 (1995)

    Article  ADS  Google Scholar 

  18. Pinegar, D.B., et al.: Stable voltage source for Penning trap experiments. Rev. Sci. Instrum. 89, 064701 (2009)

    Article  Google Scholar 

  19. Marie-Jeanne, M., et al.: Towards a magnetic field stabilization at ISOLTRAP for high-accuracy mass measurements on exotic nuclides. Nucl. Instrum. Methods Phys. Res. A 587, 464–473(2008)

    Article  ADS  Google Scholar 

  20. Brown, L.S., Gabrielse, G.: Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Diehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diehl, C., Blaum, K., Höcker, M. et al. Progress with the MPIK/UW-PTMS in Heidelberg. Hyperfine Interact 199, 291–300 (2011). https://doi.org/10.1007/s10751-011-0324-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0324-6

Keywords

Navigation