Skip to main content
Log in

High-precision mass measurements of 25Al and 30P at JYFLTRAP

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 30 September 2016

Abstract.

The masses of the astrophysically relevant nuclei 25Al and 30P have been measured with a Penning trap for the first time. The mass-excess values for 25Al ( \(\Delta = -8915.962(63)\) keV) and 30P ( \(\Delta = -20200.854(64)\) keV) obtained with the JYFLTRAP double Penning trap mass spectrometer are in good agreement with the Atomic Mass Evaluation 2012 values but \( \approx\) 5-10 times more precise. A high precision is required for calculating resonant proton-capture rates of astrophysically important reactions 25Al (p,\( \gamma\))26Si and 30P(p,\( \gamma\))31S . In this work, \( Q_{(p,\gamma)} = 5513.99(13)\) keV and \( Q_{(p,\gamma)} = 6130.64(24)\) keV were obtained for 25Al and 30P , respectively. The effect of the more precise values on the resonant proton-capture rates has been studied. In addition to nuclear astrophysics, the measured QEC value of 25Al , 4276.805(45) keV, is relevant for studies of T = 1/2 mirror beta decays which have a potential to be used to test the Conserved Vector Current hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Gallagher, S. Starrfield, Annu. Rev. Astron. Astrophys. 16, 171 (1978)

    Article  ADS  Google Scholar 

  2. A. Parikh, J. José, G. Sala, AIP Adv. 4, 041002 (2014)

    Article  ADS  Google Scholar 

  3. J. José, M. Hernanz, C. Iliadis, Nucl. Phys. A 777, 550 (2006) special issue on Nuclear Astrophysics

    Article  ADS  Google Scholar 

  4. J. José, M. Hernanz, J. Phys. G: Nucl. Part. Phys. 34, R431 (2007)

    Article  ADS  Google Scholar 

  5. J. José, C. Iliadis, Rep. Prog. Phys. 74, 096901 (2011)

    Article  ADS  Google Scholar 

  6. J. José, M. Hernanz, A. Coc, Astrophys. J. Lett. 479, L55 (1997)

    Article  ADS  Google Scholar 

  7. J. José, A. Coc, M. Hernanz, Astrophys. J. 520, 347 (1999)

    Article  ADS  Google Scholar 

  8. W.A. Mahoney, J.C. Ling, A.S. Jacobson, R.E. Lingenfelter, Astrophys. J. 262, 742 (1982)

    Article  ADS  Google Scholar 

  9. R. Diehl et al., Astron. Astrophys. 298, 445 (1995)

    ADS  Google Scholar 

  10. R. Diehl et al., Nature 439, 45 (2006)

    Article  ADS  Google Scholar 

  11. R. Diehl, Astron. Rev. 8, 030000 (2013)

    Article  ADS  Google Scholar 

  12. R. Diehl, Rep. Prog. Phys. 76, 026301 (2013)

    Article  ADS  Google Scholar 

  13. T. Eronen et al., Phys. Rev. C 79, 032802 (2009)

    Article  ADS  Google Scholar 

  14. J. José, M. Hernanz, Astrophys. J. 494, 680 (1998)

    Article  ADS  Google Scholar 

  15. J. José, A. Coc, M. Hernanz, Astrophys. J. 560, 897 (2001)

    Article  ADS  Google Scholar 

  16. S. Amari et al., Astrophys. J. 551, 1065 (2001)

    Article  ADS  Google Scholar 

  17. J. José et al., Astrophys. J. 612, 414 (2004)

    Article  ADS  Google Scholar 

  18. A. Kankainen et al., Phys. Rev. C 82, 052501 (2010)

    Article  ADS  Google Scholar 

  19. G. Audi et al., Chin. Phys. C 36, 1287 (2012)

    Article  Google Scholar 

  20. I. Moore et al., Nucl. Instrum. Methods Phys. Res. B 317, 208 (2013)

    Article  ADS  Google Scholar 

  21. V. Kolhinen et al., Nucl. Instrum. Methods Phys. Res. B 317, 506 (2013)

    Article  ADS  Google Scholar 

  22. T. Eronen et al., Eur. Phys. J. A 48, 46 (2012)

    Article  ADS  Google Scholar 

  23. P. Karvonen et al., Nucl. Instrum. Methods Phys. Res. B 266, 4794 (2008)

    Article  ADS  Google Scholar 

  24. A. Nieminen et al., Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001)

    Article  ADS  Google Scholar 

  25. G. Savard et al., Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  26. M. König et al., Int. J. Mass Spectrom. Ion Process. 142, 95 (1995)

    Article  ADS  Google Scholar 

  27. G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  28. S. George et al., Int. J. Mass Spectrom. 264, 110 (2007)

    Article  ADS  Google Scholar 

  29. S. George et al., Phys. Rev. Lett. 98, 162501 (2007)

    Article  ADS  Google Scholar 

  30. M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007)

    Article  ADS  Google Scholar 

  31. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003)

    Article  ADS  Google Scholar 

  32. M. Wang et al., Chin. Phys. C 36, 1603 (2012)

    Article  ADS  Google Scholar 

  33. C. Roux et al., Eur. Phys. J. D 67, 146 (2013)

    Article  ADS  Google Scholar 

  34. S. Rahaman et al., Eur. Phys. J. A 34, 5 (2007)

    Article  ADS  Google Scholar 

  35. V.-V. Elomaa et al., Nucl. Instrum. Methods Phys. Res. A 612, 97 (2009)

    Article  ADS  Google Scholar 

  36. R.T. Birge, Phys. Rev. 40, 207 (1932)

    Article  ADS  Google Scholar 

  37. J.M. Freeman et al., Nucl. Phys. A 132, 593 (1969)

    Article  ADS  Google Scholar 

  38. F. Everling et al., Can. J. Phys. 49, 402 (1971)

    Article  ADS  Google Scholar 

  39. M. Piiparinen, Z. Phys. 252, 206 (1972)

    Article  ADS  Google Scholar 

  40. M. Uhrmacher et al., Nucl. Instrum. Methods Phys. Res. B 9, 234 (1985)

    Article  ADS  Google Scholar 

  41. G. Audi, A. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  42. N. Severijns, M. Tandecki, T. Phalet, I.S. Towner, Phys. Rev. C 78, 055501 (2008)

    Article  ADS  Google Scholar 

  43. O. Naviliat-Cuncic, N. Severijns, Phys. Rev. Lett. 102, 142302 (2009)

    Article  ADS  Google Scholar 

  44. G.I. Harris, A.K. Hyder, Phys. Rev. 157, 958 (1967)

    Article  ADS  Google Scholar 

  45. J. Reinecke et al., Nucl. Phys. A 435, 333 (1985)

    Article  ADS  Google Scholar 

  46. P.M. Wallace et al., Phys. Rev. C 54, 2916 (1996)

    Article  ADS  Google Scholar 

  47. J.M. Freeman, Proceedings of the 5th International Conference on Atomic Masses and Fundamental Constants AMCO-5, edited by J.H. Sanders, A.H. Wapstra (Plenum Press, London, New York, 1975) p. 126

  48. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University Chicago Press, Chicago, 1988)

  49. J.A. Caggiano et al., Phys. Rev. C 65, 055801 (2002)

    Article  ADS  Google Scholar 

  50. D.W. Bardayan et al., Phys. Rev. C 65, 032801 (2002)

    Article  ADS  Google Scholar 

  51. J.-C. Thomas et al., Eur. Phys. J. A 21, 419 (2004)

    Article  ADS  Google Scholar 

  52. Y. Parpottas et al., Phys. Rev. C 70, 065805 (2004)

    Article  ADS  Google Scholar 

  53. D.W. Bardayan et al., Phys. Rev. C 74, 045804 (2006)

    Article  ADS  Google Scholar 

  54. D. Seweryniak et al., Phys. Rev. C 75, 062801 (2007)

    Article  ADS  Google Scholar 

  55. P.N. Peplowski et al., Phys. Rev. C 79, 032801 (2009)

    Article  ADS  Google Scholar 

  56. K.A. Chipps et al., Phys. Rev. C 82, 045803 (2010)

    Article  ADS  Google Scholar 

  57. N. de Séréville et al., PoS NIC XI, 212 (2010)

    Google Scholar 

  58. M.B. Bennett et al., Phys. Rev. Lett. 111, 232503 (2013)

    Article  ADS  Google Scholar 

  59. T. Komatsubara et al., Eur. Phys. J. A 50, 136 (2014)

    Article  ADS  Google Scholar 

  60. D.T. Doherty et al., Phys. Rev. C 92, 035808 (2015)

    Article  ADS  Google Scholar 

  61. Y. Parpottas et al., Phys. Rev. C 73, 049907 (2006)

    Article  ADS  Google Scholar 

  62. W.A. Richter, B.A. Brown, A. Signoracci, M. Wiescher, Phys. Rev. C 83, 065803 (2011)

    Article  ADS  Google Scholar 

  63. D.G. Jenkins et al., Phys. Rev. C 72, 031303 (2005)

    Article  ADS  Google Scholar 

  64. D.G. Jenkins et al., Phys. Rev. C 73, 065802 (2006)

    Article  ADS  Google Scholar 

  65. D.T. Doherty et al., Phys. Rev. Lett. 108, 262502 (2012)

    Article  ADS  Google Scholar 

  66. D.T. Doherty et al., Phys. Rev. C 89, 045804 (2014)

    Article  ADS  Google Scholar 

  67. C. Wrede et al., Phys. Rev. C 76, 052802 (2007)

    Article  ADS  Google Scholar 

  68. C. Wrede et al., Phys. Rev. C 79, 045803 (2009)

    Article  ADS  Google Scholar 

  69. A. Parikh et al., Phys. Rev. C 83, 045806 (2011)

    Article  ADS  Google Scholar 

  70. C. Wrede, AIP Adv. 4, 041004 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Canete.

Additional information

Communicated by Alexandra Gade

An erratum to this article can be found at http://dx.doi.org/10.1140/epja/i2016-16302-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canete, L., Kankainen, A., Eronen, T. et al. High-precision mass measurements of 25Al and 30P at JYFLTRAP. Eur. Phys. J. A 52, 124 (2016). https://doi.org/10.1140/epja/i2016-16124-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16124-0

Keywords

Navigation