Skip to main content
Log in

Magnetic, thermal and hyperfine behaviours of Tm3+ in TmPO4, YPO4 and LuPO4: a comparative study

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Single crystals of thulium phosphates (TmPO4) are grown and the principal magnetic susceptibility perpendicular to the symmetry axis ‘c’ of the crystal \(\left( {{\text{ $ \chi $ }}_ \bot } \right)\) and the magnetic anisotropy \(\Delta {\text{ $ \chi $ }}\left( {{\text{ = $ \chi $ }}_\parallel - {\text{ $ \chi $ }}_ \bot } \right)\) are measured in the temperature range 300–13.5 K and 300–80 K, respectively. Though \({\text{ $ \chi $ }}_ \bot \) increases rapidly with the decrease of temperature, \({\text{ $ \chi $ }}_\parallel \) increases very slowly with the lowering of temperature. The tetragonal crystal structure of TmPO4 is similar to that of Tm3+ in YPO4 and LuPO4 and in all the cases the non-Kramers Tm3+ ion occupies a site of D2d symmetry. Our observed magnetic data on TmPO4 are analyzed using crystal field analysis where the Hamiltonian includes the atomic free ion and crystal field (one-electron) interaction term. The computed and measured paramagnetic susceptibilities of TmPO4 agree very well in the temperature range of our study. The magnetic behaviours of Tm3+ in YPO4 and LuPO4 are also studied and the results are compared with that of TmPO4. In all the cases the natures of thermal variations of average susceptibilities and magnetic anisotropies are mostly governed by the perpendicular susceptibilities as their values are higher and rapidly increase with the lowering of temperature compared to parallel susceptibilities. The computed nuclear quadruple splittings, electronic heat capacities of Tm3+ in three different hosts give some interesting results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, M.M., Boatner, L.A., Quinby, T.C., Thomas, D.K., Rappaz, M.: Preparation and compaction of synthetic monazite powders. Radioact. Waste Manage. 1, 181 (1980)

    Google Scholar 

  2. Boatner, L.A., Beall, G.W. Abraham, M.M., Finch, C.B., Floran, R.J., Huray, P.G., Rappaz, M.: Lanthanide orthophosphates for the primary immobilization of actinide wastes. Management of Alpha-Contaminated Wastes, IAEA-SM 246/73 411 (IAEA, Vienna, 1981)

  3. Hikichi, Y., Nomura, T.: Melting temperatures of monazite and xenotime. J. Am. Ceram. Soc. 70, 252 (1987)

    Google Scholar 

  4. Blasse, G., Bril, A.: Luminescence of phosphors based on host lattices ABO4(A is Sc, In; B is P, V, Nb). J. Chem. Phys. 50, 2974 (1969)

    Article  ADS  Google Scholar 

  5. Thronton, J.R.: Properties of Neodymium laser materials. Appl. Opt. 8, 1087 (1969)

    Article  ADS  Google Scholar 

  6. Lee, J.N., Moos, H.W., Mangum, B.W.: Magnetic properties of TbPO4, a canted antiferromagnet. Solid State Commun. 9, 1139 (1971)

    Article  ADS  Google Scholar 

  7. Wright, J.C., Moos, H.W.: Spectroscopic observation of magnetic ordering in DyPO4 using line intensity measurements. Phys. Lett. A 29, 495 (1969)

    Article  ADS  Google Scholar 

  8. Cooke, A.H., Swithenby, S.J., Wells, M.R.: Magnetic interactions in Holmium Phosphate, HoPO4. J. Phys. C 6, 2209 (1973)

    Article  ADS  Google Scholar 

  9. Coing-Bayat, J., Sayetat, F., Apostolov, A.: Caracteristique´s Cristallogrphiques, properie´s et structure magne´tiques de TbPO4 dans la gamme 1.5 K – 300 K. J. Phys. (Paris) 36, 1165 (1975)

    Google Scholar 

  10. Nägele, W., Hohlwein, D., Domann, G.: Structural and magnetic phase transitions in TbPO4 studied by neutron diffraction. Z. Phys. B Condens. Matter 39, 305 (1980)

    Article  ADS  Google Scholar 

  11. Spooner, S., Lee, J.N., Moos, H.W.: Configuration of moments in TbPO4. Solid State Commun. 9, 1143 (1971)

    Article  ADS  Google Scholar 

  12. Antic-Fidancev, E., Holsa, J., Lemaitre-Blaise, M., Porcher, P.: Simulation of energy level scheme of Nd3+ and Eu3+ ions in rare earth orthovanadates and phosphates. J. Phys. B Condens. Matter 3, 6829 (1991)

    Article  ADS  Google Scholar 

  13. Rukmini, E., Jayasankar, C.K., Reid, M.F.: Correlation – crystal field analysis of Nd3+ (4f3) energy level structures in various crystal field hosts. J. Phys. B Condens. Matter 6, 5919 (1994)

    Article  ADS  Google Scholar 

  14. Loong, C.-K., Soderholm, L., Abraham, M.M., Boatner, L.A., Edelstein, N.M.: Crystal field excitations and magnetic properties of TmPO4. J. Chem. Phys. 98, 4214 (1993)

    Article  ADS  Google Scholar 

  15. Becker, P.C., Hayhrust, T., Shalimoff, G., Conway, J.G., Edelstein, N., Boatner, L.A., Abraham, M.M.: Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LnPO4. J. Chem. Phys. 81, 2872 (1984)

    Article  ADS  Google Scholar 

  16. Feigelson, R.S.: Synthesis and single-crystal growth of rare earth orthophosphates. J. Am. Chem. Soc. 47, 257 (1964)

    Google Scholar 

  17. Wanklyn, B.M., Garrard, B.J., Smith, S.H.: Super saturation, super cooling and flux growth of rare earth phosphates RPO4. J. Cryst. Growth 63, 77 (1983)

    Article  ADS  Google Scholar 

  18. Sen, H., Neogy, D., Wanklyn, B.M.: Single-crystal magnetic susceptibility and crystal field investigation of Terbium phosphate in the tetragonal phase. J. Magn. Magn. Mater. 73, 221 (1988)

    Article  ADS  Google Scholar 

  19. Neogy, D., Chatterji, A., Chakrabarti, P.K., Chattopadhyay, K.N.: Magnetic studies on erbium bromate and the crystal field. J. Magn. Magn. Mater. 136, 118 (1994)

    Article  ADS  Google Scholar 

  20. Barnes, R.G., Mössbauer, R.L., Kankeleit, E., Poindexter, J.M.: Electronic shielding by closed shells in salts of thulium. Phys. Rev. A 136, 175 (1964)

    Article  ADS  Google Scholar 

  21. Chachra, S.P., Neogy, D., Neogy, A.: Magnetic properties of Tm(C2H5SO4)3 · 9H2O and its analysis. Physica 71, 630 (1974)

    Article  ADS  Google Scholar 

  22. Neogy, D., Saha, R.K., Chakrabarti, P.K., Chattopadhyay, K.N.: The effects of crystal field on Tm3+ in Tm(BrO3)3 · 9H2O : An experimental and theoretical study. J. Phys. Chem. Solid 57, 1777 (1996)

    Article  ADS  Google Scholar 

  23. Suzuki, H., Higashino, Y., Ohtsuka, T.: SQUID NMR studies of TmPO4. J. Low Temp. Phys. 41, 449 (1980)

    Article  ADS  Google Scholar 

  24. Neogy, D., Chatterji, A., Purohit, T.: Magnetic susceptibility of Nd(BrO3)3 · 9H2O single crystal: Effects of the crystal field and calculation of the electrostatic crystal field parameters. J. Chem. Phys. 80, 3753 (1984) ; erratum 84, 2433 (1986)

    Article  ADS  Google Scholar 

  25. Neogy, D., Purohit, T.: The behavior of active centers in a laser host. Phys. Stat. Solidi B 139, 519 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, P.K., Chattopadhyay, K.N., Modak, S. et al. Magnetic, thermal and hyperfine behaviours of Tm3+ in TmPO4, YPO4 and LuPO4: a comparative study. Hyperfine Interact 175, 131–140 (2007). https://doi.org/10.1007/s10751-008-9597-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-008-9597-9

Keywords

PACS

Navigation