Skip to main content
Log in

Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew–Burke–Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Sechovsky and L. Havela, Ferromagnetic Materials, 4th ed. (Amsterdam: North-Holland, 1988).

    Google Scholar 

  2. D.D. Koelling, B.D. Dunlap, and G.W. Crabtree, Phys. Rev. B 31, 4966 (1985).

    Article  Google Scholar 

  3. A.E. Dwight, Developments in the Structural Chemistry of Alloy Phases, ed. B.C. Giessen (New York: Plenum, 1969), pp. 181–226.

    Chapter  Google Scholar 

  4. E.A. Kmetko and H.H. Hill, Plutonium 70, ed. W.N. Miner (New York: AIME, 1970), p. 233.

    Google Scholar 

  5. B. Johansson, Phys. Rev. B 8, 2740 (1975).

    Article  Google Scholar 

  6. Y. Gao, B. Wang, Y. Lei, B. Teo, and Z. Wang, Nano Res. 9, 622 (2016).

    Article  Google Scholar 

  7. Y. Gao and Z. Wang, Chin. Phys. B 25, 083102 (2016).

    Article  Google Scholar 

  8. E. Ghasemikhah, S. Jalali Asadabadi, I. Ahmad, and M. Yazdani-Kacoei, RSC Adv. 5, 7592 (2015).

    Article  Google Scholar 

  9. D. Aoki, N. Suzuki, K. Miyake, Y. Inada, R. Settai, K. Sugiyama, and E. Yamamoto, J. Phys. Soc. Jpn. 70, 538 (2001).

    Article  Google Scholar 

  10. M. Loewenhaupt and C.K. Loong, Phys. Rev. B 41, 9294 (1990).

    Article  Google Scholar 

  11. Y. Tokiw, A.D. Aoki, Y. Haga, E. Yamamoto, S. Ikeda, R. Settai, A. Nakamura, and Y.O. Nuki, J. Phys. Soc. Jpn. 70, 3326 (2001).

    Article  Google Scholar 

  12. M.H. Maaren, H.J. Daal, K.H.J. Buschow, and C.J. Schinkel, Solid State Commun. 14, 145 (1974).

    Article  Google Scholar 

  13. A. Murasik, J. Leciejewicz, S. Ligenza, and A. Misiuk, Phys. Status Solidi A 20, 395 (1973).

    Article  Google Scholar 

  14. A. Murasik, P. Fisher, and Z. Zolnierek, Physica B + C 102, 188 (1980).

    Google Scholar 

  15. S. Jalali-Asadabadi, S. Cottenier, H. Akbarzadeh, R. Saki, and M. Rots, Phys. Rev. B 66, 195103 (2002).

    Article  Google Scholar 

  16. S. Jalali-Asadabadi and H. Akbarzadeh, Physica B 349, 76 (2004).

    Article  Google Scholar 

  17. S. Jalali-Asadabadi, Phys. Rev. B 75, 205130 (2007).

    Article  Google Scholar 

  18. M. Yazdani-Kachoei, S. Jalali-Asadabadi, A. Iftikhar, and Z. Kourosh, Sci. Rep. 6, 31734 (2016).

    Article  Google Scholar 

  19. K. Schwarz, P. Blaha, and G. Madsen, Comput. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  20. A. Andreev, V.K. Belov, A. Deriagin, V.Z.A. Kazeǐ, R.Z. Levitin, A. Meňovský, Y. Popov, and V.I. Silant’ev, JETP 48, 1187 (1978).

    Google Scholar 

  21. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology, 2001).

    Google Scholar 

  22. J.P. Perdew and A. Zuanger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  23. J.P. Perdew, K. Burke, and M. Ernzerhop, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  24. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).

    Article  Google Scholar 

  25. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505 (1998).

    Article  Google Scholar 

  26. V.I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).

    Article  Google Scholar 

  27. M.P. Johansson, D. Sundholm, G. Gerfen, and M. Wikström, J. Am. Chem. Soc. 39, 11771 (2002).

    Article  Google Scholar 

  28. A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  Google Scholar 

  29. A.D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  Google Scholar 

  30. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  Google Scholar 

  31. F. Birch, Phys. Rev. B 71, 809 (1947).

    Article  Google Scholar 

  32. K. Schwarz and P. Blaha, Comput. Mater. Sci. 28, 259 (2003).

    Article  Google Scholar 

  33. J. Kollar, L. Vitos, and H.L. Skriver, Phys. Rev. B 55, 15353 (1997).

    Article  Google Scholar 

  34. S. Raju, E. Mohandas, and V.S. Raghunathan, J. Phys. Chem. Solids 58, 1367 (1997).

    Article  Google Scholar 

  35. H.H. Hill, Plutonium 1970 and Other Actinides, Part I, Nuclear Metallurgy, vol. 17, ed. W.N. Miner (New York: The Metallurgical Society, 1970), p. 2.

    Google Scholar 

  36. C. Kittle, Introduction to Solid State Physics (New York: John Wiley, 1983).

    Google Scholar 

  37. Y. Tokiwa, D. Aoki, Y. Haga, E. Yamamoto, S. Ikeda, R. Settai, A. Nakamura, and Y. Onuki, J. Phys. Condens. Matter 26, 036001 (2013).

    Google Scholar 

  38. M.S.S. Brooks and P.J. Kelly, Phys. Rev. Lett. 51, 1708 (1983).

    Article  Google Scholar 

  39. M.S.S. Brooks, Physica B 190, 55 (1993).

    Article  Google Scholar 

  40. G. Kalvius, J. Gal, F. Litterst, W. Potzel, J. Moser, U. Potzel, W. Schiessl, S. Zwirner, S. Fredo, and S. Tapuchi, J. Phys. Colloq. 49, 477 (1988).

    Article  Google Scholar 

  41. M.B. Brodsky, Prog. Phys. 41, 1457 (1978).

    Article  Google Scholar 

  42. N.J. Stone, Atom. Data Nucl. Data Tables 111–112, 1 (2016)

  43. P. Novak, Calculation of Hyperfine Field in WIEN2k (Prague 6, Czech Republic: Institute of Physics of ASCR, 2006)

  44. D. Torumba, P. Novák, and S. Cottenier, Phys. Rev. B 77, 155101 (2008).

    Article  Google Scholar 

  45. S. Zhu, X. Li, Z. Lu , G. Wang, and W. Shu, Application of Nuclear Quadrupole Resonance to Detection of Explosives and Research Activities at CIAE (Beijing: China Institute of Atomic Energy, 2008)

  46. S.K. Mohanta, S.N. Mishra, S.K. Srivastava, and M. Rots, Solid State Commun. 150, 1789 (2010).

    Article  Google Scholar 

  47. P. Ravindran, A. Delin, P. James, B. Johansson, J.M. Wills, R. Ahuja, and O. Eriksson, Magnetic. Phys. Rev. B 59, 15680 (1999).

    Article  Google Scholar 

  48. M. Jamal, S.J. Hashemifar, and H. Akbarzadeh, J. Magn. Magn. Mater. 322, 3841 (2010).

    Article  Google Scholar 

  49. M. Divis, K. Schwarz, P. Blaha, G. Hilscher, H. Michor, and S. Khmelevskyi, Phys. Rev. B 62, 67 (2000).

    Article  Google Scholar 

  50. Z. Nourbakhsh, H. Akbarzadeh, and A. Pourghazi, J. Phys. Condens. Matter 17, 2407 (2005).

    Article  Google Scholar 

  51. M. Rafiee and S. Jalali-Asadabadi, Comput. Mater. Sci. 47, 584 (2009).

    Article  Google Scholar 

  52. R. Jonathan, C. Yates, J. Pickard, and C.M. Payne, J. Phys. Chem. A 108, 6032 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sajid Khan or Majid Yazdani-Kachoei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Yazdani-Kachoei, M., Jalali-Asadabadi, . et al. Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds. J. Electron. Mater. 47, 1045–1058 (2018). https://doi.org/10.1007/s11664-017-5811-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5811-3

Keywords

Navigation