Skip to main content
Log in

Laser Based Techniques for Ultra Trace Isotope Production, Spectroscopy and Detection

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

A variety of research activities in the field of fundamental and applied nuclear physics has evolved in the last years using resonantly tuned radiation from powerful lasers. The technique of resonance ionization spectroscopy has delivered outstanding results and found broad acceptance in the last years as a particularly efficient and highly selective method for rare and exotic radioisotope studies. It is used for production, spectroscopy and detection of these species and provides complete isobaric, high isotopic and even some isomeric selection, which altogether is needed for on-line investigation of short lived species far off stability as well as for ultra trace determination. Good overall efficiency pushes the experimental limits of detection in elemental trace analysis down to below 106 atoms per sample, and additionally isotopic selectivity as high as 3 × 1012 has been demonstrated. The widespread potential of resonance ionization techniques is discussed, focusing on the experimental arrangements for applications in selective on-line isotope production, spectroscopy of rare radioisotopes and ultra trace determination of radiotoxic isotopes like 238Pu to 244Pu, 135,137Cs, 89,90Sr or 41Ca in environmental, technical and biomedical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bemis C. E. Jr. and Carter H. J. (eds.), Lasers in Nuclear Physics, Harwood Academic Publ., New York, 1982.

    Google Scholar 

  2. Application of Lasers in Atomic Nuclear research, Proc. V. Int. Workshop, Poznan, Dubna JINR Press, 2001.

  3. Otten E. W., Nuclear radii and moments of unstable isotopes, In: D.A. Bromley, Treatise on Heavy-Ion Science, Vol.8, Plenum Press, London, 1989, p. 517–638.

    Google Scholar 

  4. Neugart R., Lasers in nuclear physics, Eur. Phys. J. A15 (2002), 35.

    ADS  Google Scholar 

  5. Kluge H.-J. and Nörtershäuser W., Laser for nuclear physics, Spectrochim. Acta B58 (2003), 1031.

    ADS  Google Scholar 

  6. Lethokov V. S. (ed.), Laser Photoionization Spectroscopy, Academic Press, Orlando, 1987.

    Google Scholar 

  7. Hurst G. S. and Payne M. G. (eds.), Principles and Applications of Resonance Ionisation Spectroscopy, Adam Hilger Publ., Bristol, 1988.

    Google Scholar 

  8. Payne G., Deng L. and Thonnard N., Rev. Sci. Instrum. 65 (1994), 2433.

    Article  ADS  Google Scholar 

  9. Wendt K., Eur. Mass Spectrom. 8 (2002), 273.

    Google Scholar 

  10. Montaser A. (ed.), Inductively Coupled Plasma Mass Spectrometry, Wiley, John & Sons, New York, 1998.

    Google Scholar 

  11. Tuniz C., Bird J. R., Fink D. and Herzog G. F. (eds.), Accelerator Mass Spectrometry, CRC Press LLC, Boca Raton, 1998.

    Google Scholar 

  12. Chen C. Y., Li Y. M., Bailey K., O'Connor T. P., Young L. and Lu Z.-T., Science 286 (1999), 1193.

    Google Scholar 

  13. Sprouse G. D. and Orozco L. A., Annu. Rev. Nucl. Part. Sci. 47 (1997), 429.

    Article  ADS  Google Scholar 

  14. Wies K. et al., contribution to this issue.

  15. Nörtershäuser W., Bushaw B. A., Müller P. and Wendt K., Appl. Opt. 39 (2000), 5590.

    Article  ADS  Google Scholar 

  16. Kudryavtsev Y., Andrzejewski J., Bijnens N., Franchoo S., Gentens J., Huyse M., Piechaczek A., Szerypo J., Reusen I., Van Duppen P., Van Den Bergh P., Vermeeren L., Wauters J. and Wöhr A., Nucl. Instrum. Methods Phys. Res. B114 (1996), 350.

    ADS  Google Scholar 

  17. Krönert U., Becker S., Hilberath T., Kluge H.-J. and Schulz Ch., Appl. Phys. A44 (1987), 339.

    ADS  Google Scholar 

  18. Krönert U., Becker S., Bollen G., Gerber M., Hilberath T., Kluge H.-J. and Passler G. Nucl. Instrum. Methods Phys. Res. A300 (1991), 522.

    ADS  Google Scholar 

  19. Sauvage J., Boos N., Cabaret L., Crawford J. E., Duong H. T., Genevey J., Girod M., Huber G., Ibrahim F., Krieg M., Le Blanc F., Lee J. K. P., Libert J., Lunney D., Obert J., Oms J., Peru S., Pinard J., Putaux J. C., Roussiere B., Sebastian V., Verney D., Zemlyanoi S., Arianer J., Barre N., Ducourtieux M., Forkel-Wirth D., Le Scornet G., Lettry J., Richard-Serre C. and Veron C., Hyp. Int. 129 (2000), 303.

    Article  ADS  Google Scholar 

  20. Andreev S. V., Mishin V. I. and Letokhov V. S., Opt. Commun. 57 (1986), 317.

    Article  ADS  Google Scholar 

  21. Ames F., Brumm T., Jäger K., Kluge H.-J., Suri B. M., Rimke H., Trautmann N. and Kirchner R., Appl. Phys. B 51 (1990), 200.

    Article  ADS  Google Scholar 

  22. Mishin V. I., Fedoseyev V. N., Kluge H.-J., Letokhov V. S., Ravn H. L., Scheerer F., Shirakabe Y., Sundell S. and Tengblad O., Nucl. Instrum. Methods Phys. Res. B 73 (1993), 550.

    Article  ADS  Google Scholar 

  23. Koester U., Fedoseyev V. N. and Mishin V. I., Spectrochim. Acta. B 58 (2003), 1047.

    Article  ADS  Google Scholar 

  24. Sewtz M., Backe H., Dretzke A., Kube G., Lauth W., Schwamb P., Eberhardt K., Grüning C., Thörle P., Trautmann N., Kunz P., Lassen J., Passler G., Dong C. Z., Fritsche S. and Haire R. G. Phys. Rev. Lett. 90 (2003), 163002.

    Article  ADS  Google Scholar 

  25. Fedoseyev V. N., Koester U., Weisman L., Mishin V. I., Horn R., Huber G., Lassen J., Wendt K., Fedorov D. V. and the ISOLDE Collaboration, Nucl. Instrum. Methods Phys. Res. 204 C (2003), 353.

    ADS  Google Scholar 

  26. Grüning C., Huber G., Klopp P., Kratz J. V., Kunz P., Passler G., Trautmann N., Waldek A. and Wendt K., Int. J. Mass Spectrom. 235 (2004), 171.

    Article  Google Scholar 

  27. Passler G., Erdmann N., Hasse H. U., Herrmann G., Huber G., Köhler S., Kratz J. V., Mansel A., Nunnemann M., Trautmann N. and Waldek A., Kerntechnik 62 (1997), 85.

    Google Scholar 

  28. Kudryavtsev Y. A., Petrunin V. V., Sitkin V. M. and Lethokov V. S., Appl. Phys. B 48 (1989), 93.

    Article  ADS  Google Scholar 

  29. Schulz C., Arnold E., Borchers W., Neu W., Neugart R., Neuroth M., Otten E. W., Scherf M., Wendt K., Lievens P., Kudryavtsev Y. A., Lethokov V. S., Mishin V. I. and Petrunin V. V., J. Phys. B 24 (1991), 4831.

    Article  ADS  Google Scholar 

  30. Wendt K., Bhomwick G. K., Bushaw B. A., Herrmann G., Kratz J. V., Lantzsch J., Müller P., Nörtershäuser W., Otten E.-W., Schwalbach R., Seibert U. A., Trautmann N. and Waldek A., Radiochim. Acta 79 (1997), 183.

    Google Scholar 

  31. Bushaw B. A., Prog. Anal. Spectrosc. 12 (1989), 247.

    Google Scholar 

  32. Bushaw B. A. and Cannon B. D., Spectrochim. Acta 52B (1997), 1839.

    ADS  Google Scholar 

  33. Pibida L., Nörtershäuser W., Hutchinson J. M. R. and Bushaw B. A., Radiochim. Acta, 89 (2001), 161.

    Article  Google Scholar 

  34. Bushaw B. A., RIS-92, Inst. Phys. Conf. Series 128 (1992), 31.

    Google Scholar 

  35. Müller P., Bushaw B. A., Blaum K., Diel S., Geppert Ch., Nähler A., Trautmann N. and Wendt K., Fresenius J. Anal. Chem. 370 (2001), 508.

    Article  Google Scholar 

  36. Lu Z. T. and Wendt K. D. A., Rev. Sci. Instrum. 74 (2003), 1169.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus D. A. Wendt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendt, K.D.A., Blaum, K., Geppert, C. et al. Laser Based Techniques for Ultra Trace Isotope Production, Spectroscopy and Detection. Hyperfine Interact 162, 147–157 (2005). https://doi.org/10.1007/s10751-005-9219-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-005-9219-8

Key Words

Navigation