Skip to main content
Log in

Drivers of zooplankton beta diversity in natural shallow lakes and artificial reservoirs in the Neotropics

  • ECOLOGY OF SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Anthropogenic stressors on aquatic environments change the relative importance of environmental conditions on spatial species distributions in a regional pool. One way to assess the spatial species distribution is measure the beta diversity. This study analyzed the difference in zooplankton beta diversity between natural lakes and artificial reservoirs, to understand whether reservoirs affect beta diversity, and the relative importance of deterministic processes for the spatial distribution of species. We measured beta diversity using Raup-Crick dissimilarity and analyzed the relative impact of environmental filters on beta diversity in 30 reservoirs and 29 shallow lakes located in Brazil, during two seasons (dry and rainy period). Rotifer beta diversity did not differ between lakes and reservoirs, while copepod beta diversity was higher in reservoirs. Environmental filters were important during the dry period for both lakes and reservoirs, indicating that deterministic processes could drive beta diversity during that season. Environmental productivity, estimated by chlorophyll-a, was associated with zooplankton beta diversity in lakes and reservoirs. The spatial turnover of zooplankton communities depended on the biological characteristics of zooplankton groups, and their responses to environmental filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The database can be requested for the author's correspondence.

Code availability

Not applicable.

References

  • Agostinho, A., S. Thomaz & L. Gomes, 2004. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. International Journal of Ecohydrology & Hydrobiology International Centre of Ecology, Polish Academy of Sciences 4: 255–268.

    Google Scholar 

  • Allan, J. D., 1976. Life history patterns in zooplankton. The American Naturalist University of Chicago Press 110: 165–180.

    Google Scholar 

  • Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    Article  PubMed  Google Scholar 

  • Astorga, A., R. Death, F. Death, R. Paavola, M. Chakraborty & T. Muotka, 2014. Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecology and Evolution 4: 2693–2702.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baselga, A., S. Bonthoux & G. Balent, 2015. Temporal beta diversity of bird assemblages in agricultural landscapes: land cover change vs. stochastic processes. PLoS ONE 10: e0127913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.

    Article  PubMed  Google Scholar 

  • Bergamin, H., B. F. Reis & E. A. G. Zagatto, 1978. A new device for improving sensitivity and stabilization in flow injection analysis. Analytica Chimica Acta 97: 427–431.

    Article  Google Scholar 

  • Bini, L. M., V. L. Landeiro, A. Padial, T. Siqueira & J. Heino, 2014. Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95: 1569–1578.

    Article  PubMed  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    Article  PubMed  Google Scholar 

  • Bonecker, C. C., N. R. Simões, C. V. Minte-Vera, F. A. Lansac-Tôha, L. F. M. Velho & Â. A. Agostinho, 2013. Temporal changes in zooplankton species diversity in response to environmental changes in an alluvial valley. Limnologica - Ecology and Management of Inland Waters 43: 114–121.

    Article  Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2018. Numerical Ecology with R, Springer, New York:

    Book  Google Scholar 

  • Bovo-Scomparin, V., S. Train & L. Rodrigues, 2013. Influence of reservoirs on phytoplankton dispersion and functional traits: a case study in the Upper Paraná River. Brazil. Hydrobiologia 702(115): 127.

    Google Scholar 

  • Braghin, L. S. M., B. R. S. Figueiredo, T. Meurer, T. S. Michelan, N. R. Simões & C. C. Bonecker, 2015. Zooplankton diversity in a dammed river basin is maintained by preserved tributaries in a tropical floodplain. Aquatic Ecology 49: 175–187.

    Article  CAS  Google Scholar 

  • Brendelberger, H., 1991. Filter mesh size of cladocerans predicts retention efficiency for bacteria. Limnol. Oceanogr. 36: 884–894.

    Article  Google Scholar 

  • Cáceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: A field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.

    Article  PubMed  Google Scholar 

  • Carmouze, J. P., 1994. O Metabolismo dos Ecossistemas Aquáticos: fundamentos teóricos, métodos de estudo e análises químicas. Links. Edgard Blücher/FAPESP.

  • Carrara, F., F. Altermatt, I. Rodriguez-Iturbe & A. Rinaldo, 2012. Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proceedings of the National Academy of Sciences 109: 5761–5766.

    Article  CAS  Google Scholar 

  • Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences of the United States of America 104: 17430–17434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase, J. M., 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science (New York, N.Y.) 328: 1388–1391.

    Article  CAS  Google Scholar 

  • Chase, J. M., N. J. B. Kraft, K. G. Smith, M. Vellend & B. D. Inouye, 2011. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2: art24.

    Article  Google Scholar 

  • Chase, J. M. & M. Leibold, 2002. Spatial scale dictates the productivity-biodiversity relationship. Nature 416: 427–430.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, S. & A. S. Hadi, 2006. Regression Analysis by Example, Wiley, Hoboken, NJ:

    Book  Google Scholar 

  • De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. a J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.

    Article  PubMed  Google Scholar 

  • Dias, J. D., N. R. Simões, M. Meerhoff, F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2016. Hydrological dynamics drives zooplankton metacommunity structure in a Neotropical floodplain. Hydrobiologia 781: 109–125.

    Article  CAS  Google Scholar 

  • Dodson, S. I., 1992. Predicting crustacean zooplankton species richness. Limnology and Oceanography 37: 848–856.

    Article  Google Scholar 

  • Dodson, S. I., R. A. Lillie & S. Will-Wolf, 2005. Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes. Ecological Applications Eco Soc America 15: 1191–1198.

    Article  Google Scholar 

  • Elmoor-Loureiro, L., 1997. Manual de identificação de cladóceros Limnicos do Brasil, Editora Universa, Universa, Brasilia:

    Google Scholar 

  • Elmoor-Loureiro, L., 2000. Famílias Chydoridae e Eurycercidae. Cladóceros do Brasil. https://cladocera.wordpress.com.

  • Frisch, D., K. Cottenie, A. Badosa & A. J. Green, 2012. Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS ONE 7: e40205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galir Balkić, A., I. Ternjej & I. Bogut, 2018. Impact of habitat heterogeneity on zooplankton assembly in a temperate river-floodplain system. Environmental Monitoring and Assessment 190: 143.

    Article  PubMed  Google Scholar 

  • Gallego, I., T. A. Davidson, E. Jeppesen, C. Pérez-Martínez, F. Fuentes-Rodríguez, M. Juan & J. J. Casas, 2014. Disturbance from pond management obscures local and regional drivers of assemblages of primary producers. Freshwater Biology 59: 1406–1422.

    Article  Google Scholar 

  • Goldenberg Vilar, A., H. Van Dam, E. E. Van Loon, J. A. Vonk, H. G. Van Der Geest & W. Admiraal, 2014. Eutrophication decreases distance decay of similarity in diatom communities. Freshwater Biology 59: 1522–1531.

    Article  Google Scholar 

  • Golterman, H. L., R. S. Clymno, & M. A. M. Ohnstad, 1978. Methods for Physical & Chemical Analysis for Fresh Waters. IBP Handbook no. 8. Blackwell Scientific Publ., Oxford.

  • Hansson, L. A., M. Gyllström, A. Ståhl-Delbanco & M. Svensson, 2004. Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution. Freshwater Biology 49: 1538–1550.

    Article  Google Scholar 

  • Härkönen, L., Z. Pekcan-Hekim, N. Hellén, A. Ojala & J. Horppila, 2014. Combined effects of turbulence and different predation regimes on zooplankton in highly colored water—implications for environmental change in lakes. PLoS ONE 9: e111942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Havel, J., C. Lee & J. Vander Zanden, 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.

    Article  Google Scholar 

  • Hawkins, C. P., H. Mykrä, J. Oksanen & J. J. Vander Laan, 2015. Environmental disturbance can increase beta diversity of stream macroinvertebrate assemblages. Global Ecology and Biogeography 24: 483–494.

    Article  Google Scholar 

  • Heino, J., 2013. The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biological Reviews 88: 166–178.

    Article  PubMed  Google Scholar 

  • Heino, J., A. S. Melo, & L. M. Bini, 2015. Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshwater Biology 223–235.

  • Hill, M. J., J. Heino, I. Thornhill, D. B. Ryves & P. J. Wood, 2017. Effects of dispersal mode on the environmental and spatial correlates of nestedness and species turnover in pond communities. Oikos 126: 1575–1585.

    Article  Google Scholar 

  • Hobbs, R. J., S. Arico, J. Aronson, J. S. Baron, P. Bridgewater, V. A. Cramer, P. R. Epstein, J. J. Ewel, C. A. Klink, A. E. Lugo, D. Norton, D. Ojima, D. M. Richardson, E. W. Sanderson, F. Valladares, M. Vilà, R. Zamora & M. Zobel, 2006. Novel ecosystems: Theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography 15: 1–7.

    Article  Google Scholar 

  • Hoffmann, M. D. & S. I. Dodson, 2005. Land use, primary productivity, and lake area as descriptors of zooplankton diversity. Ecology Eco Soc America 86: 255–261.

    Google Scholar 

  • Hutchinson, G. E., 1976. A Treatise on Limnology. Volume II: Introduction to Lake Biology and the Limnoplankton. Wiley, New York.

  • Julio Jr, H. F., S. M. Thomaz, & A. A. Agostinho, 2005. Distribuição e caracterização dos reservatórios In Rodrigues, L., S. M. Thomaz, A. A. Agostinho, & J. D. Latini (eds), Biocenoses em reservatórios. padrões espaciais e temporais. Rima, São Carlos: 1–16.

  • Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.

    Article  Google Scholar 

  • Koleff, P., K. J. Gaston & J. J. Lennon, 2003. Measuring beta diversity for presence-absence data. Journal of Animal Ecology 72: 367–382.

    Article  Google Scholar 

  • Koste, W., 1978. Rotatoria die Rädertiere Mitteleuropas begründet von Max Voight. Monogononta. Berlin: Gebrüder Borntraeger.

  • Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller & J. M. Levine, 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29: 592–599.

    Article  Google Scholar 

  • Landeiro, V. L., W. E. Magnusson, A. S. Melo, H. M. V. Espírito-Santo & L. M. Bini, 2011. Spatial eigenfunction analyses in stream networks: Do watercourse and overland distances produce different results? Freshwater Biology 56: 1184–1192.

    Article  Google Scholar 

  • Legendre, P. & E. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical ecology, Elsevier Science Ltd, Amsterdam:

    Google Scholar 

  • Legendre, P., D. Borcard & P. Peres-Neto, 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75: 435–450.

    Article  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Lindenmayer, D. B., J. Fischer, A. Felton, M. Crane, D. Michael, C. Macgregor, R. Montague-Drake, A. Manning & R. J. Hobbs, 2008. Novel ecosystems resulting from landscape transformation create dilemmas for modern conservation practice. Conservation Letters 1: 129–135.

    Article  Google Scholar 

  • Lopes, V. G., C. W. Castelo Branco, B. Kozlowsky-Suzuki, I. F. Sousa-Filho, L. C. Souza & L. M. Bini, 2017. Predicting temporal variation in zooplankton beta diversity is challenging. PLoS ONE 12: 1–19.

    Google Scholar 

  • Lougheed, V. L., M. D. Mcintosh, C. A. Parker & R. J. Stevenson, 2008. Wetland degradation leads to homogenization of the biota at local and landscape scales. Freshwater Biology 53: 2402–2413.

    Article  Google Scholar 

  • Magurran, A. E., 2003. Measuring biological diversity. books.google.com. Wiley-Blackwell.

  • Malmqvist, B. & S. Rundle, 2002. Threats to the running water ecosystems of the world. Environmental Conservation 29: 134–153.

    Article  Google Scholar 

  • Marzolf, G. R., 1990. Reservoirs as environment for zooplankton In Thornton, G. W., & B. L. Kimmel (eds), Reservoir limnology: ecological perspectives. John Wiley & Sons, Canada: 195–208.

  • Matsumura-Tundisi, T., 1986. Latitudinal distribution of Calanoida copepods in freshwater aquatic systems of Brazil. Revista Brasileira De Biologia 46: 527–553.

    Google Scholar 

  • Mimouni, E. A., B. Pinel-Alloul, B. E. Beisner & P. Legendre, 2018. Summer assessment of zooplankton biodiversity and environmental control in urban waterbodies on the Island of Montréal. Ecosphere 9: e02277.

    Article  Google Scholar 

  • Nekola, J. C. & P. S. White, 1999. The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26: 867–878.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymons, M. Henry, H. Stevens, & H. Wagner, 2015. vegan: Community Ecology Package. 254.

  • Pekel, J. F., A. Cottam, N. Gorelick & A. S. Belward, 2016. Highresolution mapping of global surface water and its longterm changes. Nature 540(7633): 418.

    Article  CAS  PubMed  Google Scholar 

  • Perbiche-Neves, G., G. A. Boxshall, M. G. Nogueira & C. E. F. Da Rocha, 2014. Trends in planktonic copepod diversity in reservoirs and lotic stretches in a large river basin in South America. Marine and Freshwater Research 65: 727–737.

    Article  Google Scholar 

  • Perbiche-Neves, G., V. S. Saito, N. R. Simões, J. R. Debastiani-Júnior, D. A. O. de Naliato & M. G. Nogueira, 2019. Distinct responses of Copepoda and Cladocera diversity to climatic, environmental, and geographic filters in the La Plata River basin. Hydrobiologia 826: 113–127.

    Article  CAS  Google Scholar 

  • Peres-Neto, P., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Petsch, D. K., K. Cottenie, A. A. Padial, J. D. Dias, C. C. Bonecker, S. M. Thomaz & A. S. Melo, 2021. Floods homogenize aquatic communities across time but not across space in a Neotropical floodplain. Aquatic Sciences 83: 1–11.

    Article  Google Scholar 

  • Reid, J. W., 1985. Chave de identificação e lista de referências bibliograficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Boletim De Zoologia 9: 17–143.

    Article  Google Scholar 

  • Rodrigues, L. C., N. R. Simões, V. M. Bovo-Scomparin, S. Jati, N. F. Santana, M. C. Roberto & S. Train, 2015. Phytoplankton alpha diversity as an indicator of environmental changes in a neotropical floodplain. Ecological Indicators 48: 334–341.

    Article  CAS  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2012. Impairing the largest and most productive forest on our planet: how do human activities impact phytoplankton? Hydrobiologia 698: 375–384.

    Article  Google Scholar 

  • Segers, H., 2007. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595: 49–59.

    Article  Google Scholar 

  • Seymour, M., E. A. Fronhofer & F. Altermatt, 2015. Dendritic network structure and dispersal affect temporal dynamics of diversity and species persistence. Oikos 124: 908–916.

    Article  Google Scholar 

  • Shukla, R. & A. Bhat, 2018. Beta-diversity partitioning and drivers of variations in tropical fish community structure in central India. Aquatic Sciences 80: 18.

    Article  CAS  Google Scholar 

  • Siepielski, A. M. & M. A. McPeek, 2013. Niche versus neutrality in structuring the beta diversity of damselfly assemblages. Freshwater Biology 58: 758–768.

    Article  Google Scholar 

  • Simões, N., F. Lansac-Tôha, L. Velho & C. Bonecker, 2012. Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study. Revista de Biología 60: 1819–1836.

    Google Scholar 

  • Simões, N. R., J. D. Dias, C. M. Leal, L. de Souza Magalhães, F. A. Braghin & Lansac-Tôha, & C. C. Bonecker, 2013a. Floods control the influence of environmental gradients on the diversity of zooplankton communities in a neotropical floodplain. Aquatic Sciences 75: 607–617.

    Article  Google Scholar 

  • Simões, N., F. Lansac-Tôha & C. Bonecker, 2013b. Drought disturbances increase temporal variability of zooplankton community structure in floodplains. International Review of Hydrobiology 98: 24–33.

    Article  Google Scholar 

  • Simões, N. R., A. H. Nunes, J. D. Dias, F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2015. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758: 3–17.

    Article  CAS  Google Scholar 

  • Socolar, J. B., J. J. Gilroy, W. E. Kunin & D. P. Edwards, 2016. How should beta-diversity inform biodiversity conservation? Trends Ecology and Evolution 31: 67–80.

    Article  PubMed  Google Scholar 

  • Soininen, J., R. McDonald & H. Hillebrand, 2007. The distance decay of similarity in ecological communities. Ecography 30: 3–12.

    Article  Google Scholar 

  • Symons, C. C. & S. E. Arnott, 2013. Regional zooplankton dispersal provides spatial insurance for ecosystem function. Global Change Biology 19: 1610–1619.

    Article  PubMed  Google Scholar 

  • R Core Team, 2015. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna:

    Google Scholar 

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Vellend, M., 2001. Do commonly used indices of β-diversity measure species turnover? Journal of Vegetation Science 12: 545–552.

    Article  Google Scholar 

  • Wang, J., J. Soininen, Y. Zhang, B. Wang, X. Yang & J. Shen, 2012. Patterns of elevational beta diversity in micro- and macroorganisms. Global Ecology and Biogeography 21: 743–750.

    Article  CAS  Google Scholar 

  • Ward, J. & J. Stanford, 1995. The serial discontinuity concept: extending the model to floodplain rivers. Regulated Rivers: Research and Management 10: 159–168.

    Article  Google Scholar 

Download references

Acknowledgements

We also would like to thank the Brazilian National Council of Technological and Scientific Development (CNPq) for providing post-doctoral scholarship (J. D. Dias), Research Productivity Scholarships (F.A. Lansac-Tôha and C.C. Bonecker), and grants (PIAP–PELD LTER -Nupélia). M. Meerhoff was supported by SNI-ANII and the L’Oréal-UNESCO Women in Science national award. We are grateful to B. T. Segovia for valuable contribution and ideas in early versions of the manuscript. We thank the two anonymous reviewers who contributed to the improvement of the manuscript.

Funding

Brazilian National Council of Technological and Scientific Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

NRS, JDD, LMB and MM framed the main idea. Project coordination, material preparation, and data collection were performed by FAL and CCB. Numerical analyses were performed by NRS and JDD. The first draft of the manuscript was written by NRS and reviewed by all authors. All authors contributed to editing subsequent versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nadson R. Simões.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Additional information

Handling Editor: Sidinei M. Thomaz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: José L. Attayde, Renata F. Panosso, Vanessa Becker, Juliana D. Dias & Erik Jeppesen / Advances in the Ecology of Shallow Lakes.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simões, N.R., Dias, J.D., Meerhoff, M. et al. Drivers of zooplankton beta diversity in natural shallow lakes and artificial reservoirs in the Neotropics. Hydrobiologia 849, 3705–3717 (2022). https://doi.org/10.1007/s10750-022-04825-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04825-9

Keywords

Navigation