Skip to main content
Log in

Effects of two different predators on zooplankton in vegetated patches of shallow eutrophic lakes: a mesocosm simulation

  • ECOLOGY OF SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Macroinvertebrates and small fishes can both be important predators of zooplankton in littoral zones of shallow lakes. The aim of this study is to analyze how these predators may interact to affect zooplankton, algal biomass, and water turbidity. We performed a 15-day mesocosms experiment in 12 tanks (1300 l) simulating a littoral zone. A 2 × 2 factorial experiment was designed as follows: (1) Control without predators, (2) 7 nymphs of Anisoptera, (3) 2 visual zooplanktivorous fish and (4) 7 Anisoptera and 2 fishes. Results showed significant effects of fish on the abundance of Cladocera and its concentration among the macrophyte zone. On the other hand, we found no effects of Anisoptera on zooplankton abundance or distribution. No significant interaction between the predator effects was found on most response variables. Water turbidity increased only in the treatments with fish. Macrophytes offer a refuge for zooplankton to fish predation, but antagonist interactions appear when both predators were present, and the shelter effect of vegetated patches to the main herbivores against fish predation was less important when Anisoptera was present. The macroinvertebrate fauna of the littoral zone should be carefully considered in the restoration plans of shallow eutrophic lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Supplementary data included.

Code availability

Not applicable.

References

  • Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry, R. Escaray & I. Izaguirre, 2009. Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624: 45–60.

    Article  CAS  Google Scholar 

  • American Public Health Association, American Water Works Association, Water Pollution Control Federation, & Water Environment Federation, 2005. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C.

    Google Scholar 

  • Arcifa, M., T. dos Santos Ferreira, C. Fileto, M. S. Maioli Castilho-Noll, T. C. Bunioto & W. J. Minto, 2015. A long-term study on crustacean plankton of a shallow tropical lake: the role of invertebrate predation. Journal of Limnology 74: 606–617.

    Google Scholar 

  • Balseiro, E. G., 1992. The role of pelagic water mites in the control of cladoceran population in a temperate lake of the southern Andes. Journal of Plankton Research 14: 1267–1277.

    Article  Google Scholar 

  • Benndorf, J., H. Kneschke, K. Kossatz & E. Penz, 1984. Manipulation of the pelagic food web by stocking with predacious fishes. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie 69: 407–428.

    Article  Google Scholar 

  • Bertolo, A., G. Lacroix, F. Lescher-Moutouš & S. Sala, 1999. Effects of physical refuges on fish–plankton interactions. Freshwater Biology 41: 795–808.

    Article  Google Scholar 

  • Blois, C., 1985. Diets and resource partitioning between larvae of three anisopteran species. Hydrobiologia 126: 221–227.

    Article  Google Scholar 

  • Boveri, M. & R. Quirós, 2002. Trophic interactions in pampean shallow lakes: evaluation of silverside predatory effects in mesocosm experiments. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Verhandlungen 28: 1274–1278.

    CAS  Google Scholar 

  • Boveri, M. & R. Quirós, 2007. Cascading trophic effects in pampean shallow lakes: results of a mesocosm experiment using two coexisting fish species with different feed strategies. Hydrobiologia 584: 215–222.

    Article  Google Scholar 

  • Brito, J. S., T. S. Michelan & L. Juen, 2021. Aquatic macrophytes are important substrates for Libellulidae (Odonata) larvae and adults. Limnology 22: 139–149.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Burks, R. L., E. Jeppesen & D. M. Lodge, 2001a. Littoral zone structures as Daphnia refugia against fish predators. Limnology and Oceanography 46: 230–237.

    Article  Google Scholar 

  • Burks, R. L., E. Jeppesen & D. M. Lodge, 2001b. Pelagic prey and benthic predators: impact of odonate predation on Daphnia. Journal of the North American Benthological Society 20: 615–628.

    Article  Google Scholar 

  • Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.

    Article  Google Scholar 

  • Canfield, D. E., J. V. Shireman, D. E. Colle, W. T. Haller, C. E. Watkins & M. J. Maceina, 1984. Prediction of chlorophyll a concentrations in Florida Lakes – importance of aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 41: 497–501.

    Article  CAS  Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.

    Article  Google Scholar 

  • Carpenter, S., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Article  Google Scholar 

  • Castilho-Noll, M. S. M. & M. S. Arcifa, 2007. Mesocosm experiment on the impact of invertebrate predation on zooplankton of a tropical lake. Aquatic Ecology 41: 587–598.

    Article  Google Scholar 

  • Choi, J. Y., K. S. Jeong, G. H. La & G. J. Joo, 2015. Spatio-temporal distribution of Diaphanosoma brachyurum (Cladocera: Sididae) in freshwater reservoir ecosystems: importance of maximum water depth and macrophyte beds for avoidance of fish predation. Journal of Limnology 74: 403–413.

    Google Scholar 

  • Clemente, J. M., T. Boll, F. Teixeira-de Mello, C. Iglesias, A. Roer, E. J. Pedersen & M. Meerhoff, 2019. Role of plant architecture on littoral macroinvertebrates in temperate and subtropical shallow lakes: a comparative manipulative field experiment. Limnetica 38: 759–772.

    Article  Google Scholar 

  • Corbet, P. S., 1993. Are odonata useful as bioindicators. Libellula 12: 91–102.

    Google Scholar 

  • Cryer, M. & C. Townsend, 1988. Spatial distribution of zooplankton in a shallow eutrophic lake, with a discussion of its relation to fish predation. Journal of Plankton Research 10: 487–501.

    Article  Google Scholar 

  • Diehl, S. & R. Kornijóv, 1998. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In Jeppesen, E., Søndergaard, M. & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York.

  • Dos Santos, N., L. Stephan, A. Otero, C. Iglesias & M. Maioli Castilho-Noll, 2020. How free-floating macrophytes influence interactions between planktivorous fish and zooplankton in tropical environments? An in-lake mesocosm approach. Hydrobiologia 847: 1357–1370.

    Article  Google Scholar 

  • Dumont, H. J., 1994. On the diversity of the cladocera in the tropics. Hydrobiologia 272: 27–38.

    Article  Google Scholar 

  • Fontanarrosa, M. S., P. L. Torres & M. C. Michat, 2004. Comunidades de insectos acuáticos de charcos temporarios y lagunas en la ciudad de Buenos Aires (Argentina). Revista De La Sociedad Entomológica Argentina 63: 3–4.

    Google Scholar 

  • Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In Sommer, U. (ed.), Plankton Ecology. Springer, Berlin: 253–296.

    Chapter  Google Scholar 

  • González Sagrario, M. A. & E. Balseiro, 2003. Indirect enhancement of large zooplankton by consumption of predacious macroinvertebrates by littoral fish. Archiv Für Hydrobiologie 158: 551–574.

    Article  Google Scholar 

  • González Sagrario, M. A. & E. Balseiro, 2010. The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshwater Biology 55: 2153–2166.

    Article  Google Scholar 

  • González Sagrario, M. A., E. Balseiro, R. Ituarte & E. Spivak, 2009. Macrophytes as refuge or risky area for zooplankton: a balance set by littoral predacious macroinvertebrates. Freshwater Biology 54: 1042–1053.

    Article  Google Scholar 

  • Hammond, J. I., B. Luttbeg & A. Sih, 2007. Predator and prey space use: dragonflies and tadpoles in an interactive game. Ecology 88: 1525–1535.

    Article  PubMed  Google Scholar 

  • Hampton, S. E., J. J. Gilbert & C. W. Burns, 2000. Direct and indirect effects of juvenile Buenoa macrotibialis (Hemiptera: Notonectidae) on the zooplankton of a shallow pond. Limnology and Oceanography 45: 1006–1012.

    Article  Google Scholar 

  • Haney, J. F. & D. J. Hall, 1973. Sugar-coated Daphnia: a preservation technique for Cladocerans. Limnology and Oceanography 18: 331–333.

    Article  Google Scholar 

  • Herwig, B. R. & D. E. Schindler, 1996. Effects of aquatic insect predators on zooplankton in fishless ponds. Hydrobiologia 324: 141–147.

    Article  Google Scholar 

  • Hirvonen, H., 1999. Shifts in foraging tactics of larval damselflies: effects of prey density. Oikos 86: 443–452.

    Article  Google Scholar 

  • Hrbáčke, J., M. Dvořáková, V. Kořínek & L. Prochazkova, 1961. Demonstration of the effect of fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Internationale Vereinigung Fur Theoretische Und Angewandte Limnologie Verhandlungen 14: 192–195.

    Google Scholar 

  • Hurlbert, S. H. & M. S. Mulla, 1981. Impacts of mosquitofish (Gambusia affinis) predation on plankton communities. Hydrobiologia 83: 125–151.

    Article  Google Scholar 

  • Iglesias, C., G. Goyenola, N. Mazzeo, M. Meerhoff, E. Rodó & E. Jeppesen, 2007. Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia 584: 179–189.

    Article  CAS  Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García-Alonso, S. Amsinck, J. C. Paggi, S. J. Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.

    Article  Google Scholar 

  • Iglesias, C., E. Jeppesen, N. Mazzeo, J. P. Pacheco, F. T. D. Mello, F. Landkildehus, C. Fosalba, J. M. Clemente & M. Meerhoff, 2017. Fish but not macroinvertebrates promote trophic cascading effects in high density submersed plant experimental lake food webs in two contrasting climate regions. Water 9: 514.

    Article  CAS  Google Scholar 

  • Jeppesen, E., J. Perder  Jensen, M. Søndergaard, T. Lauridsen, L. Junge Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. In Shallow Lakes’ 95 (pp. 151–164). Springer, Dordrecht.

  • Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. Perrow, 1998. Impact of submerged macrophytes on fish–zooplankton interactions in lakes. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes Ecological Studies, Vol. 131. Springer, New York: 91–114.

    Chapter  Google Scholar 

  • Johnson, D. M., 1991. Behavioral ecology of larval dragonflies and damselflies. Trends in Ecology & Evolution 6: 8–13.

    Article  CAS  Google Scholar 

  • Kruk, C., L. Rodríguez-Gallego, M. Meerhoff, F. Quintans, G. Lacerot, N. Mazzeo, F. Scasso, J. C. Paggi, E. T. H. M. Peeters & M. Scheffer, 2009. Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshwater Biology 54: 2628–2641.

    Article  CAS  Google Scholar 

  • Lampert, W. & U. Sommer, 2007. Limnoecology: The Ecology of Lakes and Streams, 2nd ed. Oxford University Press, Oxford.

    Google Scholar 

  • Lauridsen, T. L. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zones of two shallow eutrophic lakes. Archiv Für Hydrobiologie 137: 161–176.

    Article  Google Scholar 

  • Lauridsen, T. L. & D. M. Lodge, 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnology and Oceanography 41: 794–798.

    Article  Google Scholar 

  • Lauridsen T., L. J. Pedersen, E. Jeppesen & M. Sønergaard, 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. Journal of Plankton Research, Issue 12: 2283–2294.

  • Mamani, A., M. L. Koncurat Savid & M. Boveri, 2019. Combined effects of fish and macroinvertebrate predation on zooplankton in a littoral mesocosm experiment. Hydrobiologia 829: 19–29.

    Article  CAS  Google Scholar 

  • Meerhoff, M., C. Fosalba, C. Bruzzone, N. Mazzeo, W. Noordoven & E. Jeppesen, 2006. An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology 51: 1320–1330.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. Teixeira de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007a. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. Teixeira de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007b. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Moss, B., S. McGowan & L. Carvalho, 1994. Determination of phytoplankton crops by top-down and bottom-up mechanisms in a group of English lakes, the West Midland. Limnology Oceanography 39: 1020–1029.

    Article  CAS  Google Scholar 

  • O'Brien, W. J., 1979. The predator-prey interaction of planktivorous fish and zooplankton: recent research with planktivorous fish and their zooplankton prey shows the evolutionary thrust and parry of the predator-prey relationship. American Scientist, 67: 572–581.

    Google Scholar 

  • Pantel, J. H., C. Duvivier & L. D. Meester, 2015. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecology Letters 18: 992–1000.

    Article  PubMed  Google Scholar 

  • Perrow, M. R., A. J. Jowitt, J. H. Stansfield & G. L. Phillips, 1999. The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration. Hydrobiologia 395: 199–210.

    Article  Google Scholar 

  • Pierce, C. L., 1988. Predator avoidance, microhabitat shift, and risk-sensitive foraging in larval dragonflies. Oecologia 77: 81–90.

    Article  CAS  PubMed  Google Scholar 

  • Pinto-Coelho, R. M., J. F. Bezerra-Neto, F. Miranda, T. G. Mota, R. Resck, A. M. Santos, P. M. Maia-Barbosa, N. A. S. T. Mello, M. M. Marques, M. O. Campos & F. A. R. Barbosa, 2008. The inverted trophic cascade in tropical plankton communities: impacts of exotic fish in the middle Rio Doce lake district, Minas Gerais, Brazil. Brazilian Journal of Biology 68: 1025–1037.

    Article  CAS  Google Scholar 

  • Quirós, R., J. J. Rosso, A. Rennella, A. Sosnovsky & M. Boveri, 2002. Análisis del estado trófico de las lagunas pampeanas (Argentina). Interciencia 27: 584–591.

    Google Scholar 

  • Rennella, A. M. & R. Quirós, 2002. Relations between planktivorous fish and zooplankton in two very shallow lakes of the pampa plain. Verhandlungen Des Internationalen Verein Limnologie 28: 887–891.

    Google Scholar 

  • Ringuelet, R. A., R. Iriart & A. H. Escalante, 1980. Alimentación del pejerrey (Basilichthys bonariensis bonariensis, Atherinidae) en laguna de Chascomús (Buenos Aires, Argentina). Limnobios 1: 447–460.

    Google Scholar 

  • Scheffer, M. & S. Carpenter, 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18: 648–656.

    Article  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  CAS  Google Scholar 

  • Shapiro, J., 1980. The importance of trophic-level interactions to the abundance and species composition of algae in lakes. In Barica, J. & L. Mur (eds), Hypertrophic Ecosystems. Springer, Dordrecht: 105–116.

    Chapter  Google Scholar 

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwater Biology 14: 371–383.

    Article  Google Scholar 

  • Sinistro, R., 2009. Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland. Journal of Plantonik Research 32: 209–220.

    Article  CAS  Google Scholar 

  • Špoljar, M., T. Dražinaa, J. Lajtnera, M. Duić Sertića, I. Radanovića, R. L. Wallaceb, D. Matulićc & T. Tomljanovićc, 2018. Zooplankton assemblage in four temperate shallow waterbodies in association with habitat heterogeneity and alternative states. Limnologica 71: 51–61.

    Article  Google Scholar 

  • Stephan, L. R., B. E. Beisner, S. G. M. Oliveira & M. S. M. Castilho-Noll, 2019. Influence of macrophytes on a tropical microcrustacean community based on taxonomic and functional trait diversity. Water 1: 2423.

    Article  CAS  Google Scholar 

  • Suhling, F., G. Sahlén, S. Gorb, V. J. Kalkman, K. D. B. Dijkstra & J. van Tol, 2015. Order odonata. In Thorp, J. & D. C. Rogers (eds), Ecology and General Biology: Thorp and Covich’s Freshwater Invertebrates. Academic Press, Cambridge: 893–932.

    Chapter  Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography 29: 472–486.

    Article  Google Scholar 

  • Van de Meutter, F., R. Stoks & L. De Meester, 2004. Behavioral linkage of pelagic prey and littoral predators: microhabitat selection by Daphnia induced by damselfly larvae. Oikos 107: 265–272.

    Article  Google Scholar 

  • Van de Meutter, F., R. Stoks & L. De Meester, 2005. Spatial avoidance of littoral and pelagic invertebrate predators by Daphnia. Oecologia 142: 489–499.

    Article  PubMed  Google Scholar 

  • Vinyard, G. L. & R. A. Menger, 1980. Chaoborus americanus predation on various zooplankters; functional response and behavioral observations. Oecologia 45: 90–93.

    Article  PubMed  Google Scholar 

  • Wojtal, A., P. Frankiewicz, M. Andziak & M. Zalewski, 2007. The influence of invertebrate predators on Daphnia spatial distribution and survival in laboratory experiments: support for Daphnia horizontal migration in shallow lakes. International Review of Hydrobiology 92: 23–32.

    Article  Google Scholar 

  • Zagarese, H. E., 1991. Planktivory by larval Odontesthes bonariensis (Atherinidae: Pisces) and its effects on zooplankton community structure. Journal of Plankton Research 13: 549–560.

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Scala, A. Rennella, A. López, M. Mattos and the volunteer students for their assistance during the experiment and the laboratory work. We are very grateful to two anonymous reviewers for their critical comments, P. Binder and Karina Hodara for statistical help, and José Luiz Attayde for his improvement of the early version of the manuscript. We also thank Chascomús Hydrobiological Station for the fish, and J. Quirós and F. Olarte for the language correction.

Funding

This study was supported by Universidad de Buenos Aires, Programación científica UBACYT 20020170200164BA: Pequeñas lagunas del paisaje agropecuario pampeano: estructura y funcionamiento.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to M. Boveri.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

CICUAL-Agro of animal welfare approval n°27/2020.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Guest editors: José L. Attayde, Renata F. Panosso, Vanessa Becker, Juliana D. Dias & Erik Jeppesen / Advances in the Ecology of Shallow Lakes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamani, A., Baralic, L., Nasta, L. et al. Effects of two different predators on zooplankton in vegetated patches of shallow eutrophic lakes: a mesocosm simulation. Hydrobiologia 849, 3831–3841 (2022). https://doi.org/10.1007/s10750-022-04817-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04817-9

Keywords

Navigation