Skip to main content

Advertisement

Log in

Submerged macrophytes in Danish lakes: impact of morphological and chemical factors on abundance and species richness

  • ECOLOGY OF SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We analysed long-term monitoring data on submerged macrophytes and water chemistry from 666 Danish lakes > 1 hectare and mean depth < 3 m, encompassing a total of 1447 lake years. Our aim was to describe how plant cover (COV), plant volume inhabited (PVI) and species richness related to physical and chemical and environmental variables. Boosted regression tree (BRT) analyses revealed that chlorophyll a, Secchi depth and depth were the strongest predictors of COV and PVI. Chlorophyll had a strong negative effect up to 50 µg/l, whereas the changes related to Secchi depth and depth were more gradual and covered more of the gradient. Macrophyte species richness was best predicted by lake area and alkalinity, with chlorophyll a, nutrients and colour having significant but less marked effects. For chlorophyll a, 78% of the observed variance could be explained by the BRT model, with the most powerful predictors being both phosphorus and nitrogen, but with significant additional effects of plant cover and alkalinity. Our analyses revealed limited direct effect of nutrients on macrophyte abundance, but an indirect hierarchical effect of nutrients mediated through chlorophyll a with additional interactive effects by plant cover itself, alkalinity, mean depth and colour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed in the current study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  • Alahuhta, J., S. Kosten, A. Munemitsu, et al., 2017. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal Biogeography 88: 1758–1769.

    Article  Google Scholar 

  • Bakker, E. S., J. M. Sarneel, R. D. Gulati, Z. Liu & E. van Donk, 2012. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710: 2–37.

  • Barker, T., K. Hatton, M. O’Connor, L. Connor & B. Moss, 2008. Effects of nitrate load on submerged plant biomass and species richness: results of a mesocosm experiment. Fundamental Applied Limnology 173: 89–100.

    Article  CAS  Google Scholar 

  • Beaulieu, J. J., S. Waldo, D. A. Balz, W. Barnett, A. Hall, M. C. Platz & K. M. White, 2020. Methane and carbon dioxide emissions from reservoirs: Controls and upscaling. Journal of Geophysical Research Biogeoscience. https://doi.org/10.1029/2019JG005474.

    Article  Google Scholar 

  • Bolduc, P., A. Bertolo & B. Pinel-Alloul, 2016. Does submerged aquatic vegetation shape zooplankton community structure and functional diversity? A test with a shallow fluvial lake system. Hydrobiologia 778: 151–165.

    Article  Google Scholar 

  • Boros, G., M. Søndergaard, P. Takács, A. Vári & I. Tátrai, 2011. Influence of submerged macrophytes, temperature, and nutrient loading on the development of redox potential around the sediment-water interface in lakes. Hydrobiologia 665: 117–127.

    Article  CAS  Google Scholar 

  • Burks, R. L., E. Jeppesen & D. M. Lodge, 2001. Littoral zone structures as Daphnia refugia against fish predators. Limnology & Oceanography. 46: 230–237.

    Article  Google Scholar 

  • Canfield, D. E., Jr., 1983. Prediction of chlorophyll a concentrations in Florida lakes: the importance of phosphorusand nitrogen. Water Resources Bulletin 19: 255–262.

    Article  CAS  Google Scholar 

  • Cobbaert, D., A. Wong & S. E. Bayley, 2014. Precipitation-Induced Alternative regime switches in shallow lakes of the Boreal Plains (Alberta, Canada). Ecosystems 17: 535–549.

    Article  CAS  Google Scholar 

  • Dai, Y. R., S. P. Cheng, W. Liang & Z. B. Wu, 2015. Submerged macrophyte Ceratophyllum demersum affects phosphorus exchange at the sediment-water interface. Watater Science & Technology 71: 913–921.

    Article  CAS  Google Scholar 

  • Declerck, S., J. Vandekerkhove, L. S. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van der Gucht, C. Pérez-Martínez, T. L. Lauridsen, K. Schwenk, G. Zwart, W. Rommens, J. López-Ramos, E. Jeppesen, W. Vyverman, L. Brendonck & L. De Meester, 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.

    Article  Google Scholar 

  • Ejankowski, W. & T. Lenard, 2015. Climate driven changes in the submerged macrophyte and phytoplankton community in a hard water lake. Limnologica 52: 59–66.

    Article  CAS  Google Scholar 

  • Elith, J., J. R. Leathwick & T. Hastie, 2008. A working guide to boosted regression trees. Journal of Animmal Ecology 77: 802–813.

    Article  CAS  Google Scholar 

  • Ersoy, Z., U. Scharfenberger, D. L. Baho, T. Bucak, T. Feldmann, J. Hejzlar, E. E. Levi, A. Mahdy, T. Nõges, E. Papastergiadou, K. Stefanidis, M. Šorf, M. Søndergaard, C. Trigal, E. Jeppesen & M. Beklioğlu, 2020. Impact of nutrients and water level changes on submerged macrophytes along a temperature gradient: A pan-European mesocosm experiment. Global Change Biology. https://doi.org/10.1111/gcb.15338.

    Article  PubMed  Google Scholar 

  • Gao, Y., C. Yin, U. Zhao, Z. Liu & B. Guan, 2020. Effects of diversity, coverage and biomass of submerged macrophytes on nutrient concentrations, water clarity and phytoplankton biomass in two restored shallow lakes. Water 12: 1425.

    Article  CAS  Google Scholar 

  • Gillard, M. B., J. Aroviita & J. Alahuhta, 2020. Same species, same habitat preferences? The distribution of aquatic plants is not explained by the same predictors in lakes and streams. Freshwater Biology 65: 878–889.

    Article  Google Scholar 

  • Greenwell, B., B. Boehmke & C. Cunningham, 2018. gbm: generalized boosted regression models. R Package Version 2(1): 5.

    Google Scholar 

  • Hilt, S., M. M. Alirangues Nuñez, E. S. Bakker, I. Blindow, T. A. Davidson, M. Gillefalk, L.-A. Hansson, J. H. Janse, A. B. G. Janssen, E. Jeppesen, T. Kabus, A. Kelly, J. Köhler, T. L. Lauridsen, W. M. Mooij, R. Noordhuis, G. Phillips, J. Rücker, H.-H. Schuster, M. Søndergaard, S. Teurlincx, K. van de Weyer, E. van Donk, A. Waterstraat, N. Willby & C. D. Sayer, 2018. Response of submerged macrophyte communities to external and internal restoration measures in north temperate shallow lakes. Frontiers in Plant Science 9: 194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarvis, L. A., B. C. McMeans, H. C. Giacomin & C. Chu, 2020. Species-specific preferences drive the differential effects of lake factors on fish production. Canadian Journal of Fisheries and Aquatic Sciences 77: 1625–1637.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen(eds), 1998. The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, vol. 131, Springer.

  • Jeppesen, E., M. Søndergaard, J. Jensen, K. E. Havens, O. Anneville, L. Carvalho, et al., 2005. Lake responses to reduced nutrient loading-an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Kolada, A., N. Willby, B. Dudley, P. Nõges, M. Søndergaard, S. Hellsten, M. Mjelde, E. Penning, G. van Geest, V. Bertrin, F. Ecke, H. Mäemets & K. Karus, 2014. The applicability of macrophyte compositional metrics for assessing eutrophication in European lakes. Ecological Indicators 45: 407–415.

    Article  CAS  Google Scholar 

  • Kosten, S., G. Lacerot, E. Jeppesen, D. da Motta Marques, E. H. van Nes, N. Mazzeo & M. Scheffer, 2009. Effects of submerged vegetation on water clarity across climates. Ecosystems 12: 1117–1129.

    Article  Google Scholar 

  • Kozak, A. & R. Gołdyn, 2016. Macrophyte response to the protection and restoration measures of four water bodies. International Revue of Hydrobiologia 101: 160–172.

    Article  CAS  Google Scholar 

  • Larson, D. M., S. D. Cordts & N. Hansel-Welch, 2020. Shallow lake management enhanced habitat and attracted waterbirds during fall migration. Hydrobiologia 847: 3365–3379.

    Article  CAS  Google Scholar 

  • Li, Y., L. Wang, C. Chao, H. Yu, D. Yu & C. Liu, 2020. Submerged macrophytes successfully restored a subtropical aquacultural lake by controlling its internal phosphorus loading. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.115949.

    Article  PubMed  Google Scholar 

  • Liang, Z. Y., P. A. Soranno & T. Wagner, 2020. The role of phosphorus and nitrogen on chlorophyll a: Evidence from hundreds of lakes. Water Research. https://doi.org/10.1016/j.watres.2020.116236.

    Article  PubMed  Google Scholar 

  • Mämets, H., L. Freiberg, M. Haldna & T. Möls, 2006. Inter-annual variability of Potamogeton perfoliatus stands. Aquatic Botany 85: 177–183.

    Article  Google Scholar 

  • Olsen, S., F. Chan, W. Li, S. Zhao, M. Søndergaard & E. Jeppesen, 2015. Strong impact of nitrogen loading on submerged macrophytes and algae: a long-term mesocosm experiment in a shallow Chinese lake. Freshwater Biology 60: 1525–1536.

    Article  CAS  Google Scholar 

  • Phillips, G., N. Willby & B. Moss, 2016. Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquatic Botany 135: 37–45.

    Article  Google Scholar 

  • Poikane, S., R. Portielje, L. Denys, D. Elferts, M. Kelly, A. Kolada, H. Mäemets, G. Phillips, M. Søndergaard, N. Willby & M. S. van den Berg, 2018. Macrophyte assessment in European lakes: diverse approaches but convergent views of ‘good’ ecological status. Ecological Indicators 94: 185–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team, 2020. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. R-project.org/

  • Reitsema, R. E., J.-W. Wolters, S. Preiner, P. Meire, T. Hein, G. De Boeck, R. Blust & J. Schoelynck, 2020. Response of submerged macrophyte growth, morphology, chlorophyll content and nutrient stoichiometry to increased flow velocity and elevated CO2 and dissolved organic carbon concentrations. Frontiers Environmental Sciences 11: 527801.

    Article  Google Scholar 

  • Rooney, N. & J. Kalff, 2000. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry. Aquatic Botany 68: 321–335.

    Article  Google Scholar 

  • Sand-Jensen, K., H. H. Bruun & L. Baastrup-Spohr, 2017. Decade-long time delays in nutrient and plant species dynamics during eutrophication and re-oligotrophication of Lake Fure 1900–2015. Journal of Ecology 105: 690–700.

    Article  Google Scholar 

  • Sayer, C. D., T. A. Davidson & J. I. Jones, 2010. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshwatater Biology 55: 500–513.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss, & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends Ecology Evolution 8: 275–279.

  • Schultz, R. & E. Dibble, 2012. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684: 1–14.

    Article  Google Scholar 

  • Seip, K. L., 1994. Phosphorus and nitrogen limitation of algal biomass across trophic gradients. Aquatic Sciences 56: 16–28.

    Article  Google Scholar 

  • Sorrell, B. K., M. T. Downes & C. L. Stanger, 2002. Methanotrophic bacteria and their activity on submerged aquatic macrophytes. Aquatic Botany 72: 107–119.

    Article  Google Scholar 

  • Stefanidis, K., M. Sarika & E. Papastegiadou, 2019. Exploring environmental predictors of aquatic macrophytes in water dependent Natura 2000 sites of high conservation value: results from a long-term study of macrophytes in Greek lakes. Aquatic Conservation 29: 1–16.

    Article  Google Scholar 

  • Stephen, D., B. Moss & G. Phillips, 1997. Do rooted macrophytes increase sediment phosphorus release? Hydrobiologia 342–343: 27–34.

    Article  Google Scholar 

  • Svendsen, L. M., L. van der Bijl, S. Boutrup & B. Norup (eds), 2005. NOVANA. National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments. Programme Description, part 2. NERI Technical Report No. 537. National Environmental Research Institute, Aarhus, 13C89536/0/FR537_www_S_H.pdf.

  • Søndergaard, M., E. Jeppesen, J. P. Jensen & S. L. Amsinck, 2005. Water framework directive: ecological classification of Danish lakes. Journal of Applied Ecology 42: 616–629.

    Article  Google Scholar 

  • Søndergaard, M., L. S. Johansson, T. L. Lauridsen, T. B. Jørgensen, L. Liboriussen & E. Jeppesen, 2010. Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology 55: 893–908.

    Article  Google Scholar 

  • Søndergaard, M., S. E. Larsen, L. S. Johansson, T. L. Lauridsen & E. Jeppesen, 2016. Ecological classification of lakes: uncertainty and the influence of year-to-year variability. Ecological Indicators 61: 248–257.

    Article  Google Scholar 

  • Søndergaard, M., T. L. Lauridsen, L. S. Johansson & E. Jeppesen, 2017a. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795: 35–48.

    Article  Google Scholar 

  • Søndergaard, M., T. L. Lauridsen, L. S. Johansson & E. Jeppesen, 2017b. Repeated fish removal to restore lakes: Case study Lake Væng, Denmark—two biomanipulations during 30 years of monitoring. Water 9: 43.

    Article  Google Scholar 

  • Søndergaard, M., L. S. Johansson, E. E. Levi, T. L. Lauridsen & E. Jeppesen, 2020. Lake types and their definition: a case study from Denmark. Inland Waters 10: 227–240.

    Article  CAS  Google Scholar 

  • Therneau, T., B. Atkinson & B. Ripley, 2019. rpart: recursive partitioning and regression trees. R Package Version 4: 1–15.

    Google Scholar 

  • Verhofstad, M. J. & E. S. Bakker, 2019. Classifying nuisance submerged vegetation depending on ecosystem services. Limnology 20: 55–68.

    Article  Google Scholar 

  • Vestergaard, O. & K. Sand-Jensen, 2000. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area. Canadian Journal of Fisheries and Aquatic Sciences 57: 2022–2031.

    Article  Google Scholar 

  • Wang, H. J., H. Z. Wang, X. M. Liang & S. K. Wu, 2014. Total phosphorus thresholds for regime shifts are nearly equal in subtropical and temperate shallow lakes with moderate depth and areas. Freshwater Biology 59: 1659–1671.

    Article  CAS  Google Scholar 

  • Waters, S. & J. B. Webster-Brown, 2020. The release of legacy phosphorus from deforestation-derived sediments in shallow, coastal lake Forsyth/Te Roto o Wairewa. New Zealand Journal of Marine Freshwater Research 55: 446–465.

    Article  CAS  Google Scholar 

  • Yang, Y. F., Y. J. Yi, W. Wang, Y. Zhou & Z. F. Yang, 2020. Generalized additive models for biomass simulation of submerged macrophytes in a shallow lake. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135108.

    Article  PubMed  Google Scholar 

  • Zhang, Y., E. Jeppesen, X. Liu, B. Qin, K. Shi, Y. Zhou, S. M. Thomaz & J. Deng, 2017. Global loss of aquatic vegetation in lakes. Earth-Science Reviews 173: 259–265.

    Article  CAS  Google Scholar 

  • Ziegler, J. P., C. T. Solomon, B. P. Finney & I. Gregory-Eaves, 2015. Macrophyte biomass predicts food chain length in shallow lakes. Ecosphere 6: 5.

    Article  Google Scholar 

Download references

Acknowledgements

The former Danish counties and The Danish Environmental Protection Agency are acknowledged for many years of careful sampling of Danish lakes in relation to the NOVANA monitoring program. We are grateful to Anne Mette Poulsen and Tinna Christensen for editorial and layout assistance. The project was supported by the AU Centre for Water Technology (watec.au.dk). Part of this study was finalised with funds from the Poul Due Jensen Foundation. Erik Jeppesen was supported by the TÜBITAK project BIDEB2232 (project 118C250), and Thomas Davidson was also supported by Danmarks Frie Forskningsfond Natur og Univers project GREENLAKES (No. 9040-00195B) and PONDERFUL—POND Ecosystems for Resilient FUture Landscapes in a changing climate (Grant agreement ID: 869296) H2020 LC-CLA-2018-2019-2020).

Funding

The project was supported by the AU Centre for Water Technology (watec.au.dk). A part of this study was finalised with funds from the Poul Due Jensen Foundation. Erik Jeppesen was supported by the TÜBITAK project BIDEB2232 (project 118C250), and Thomas Davidson was also supported by Danmarks Frie Forskningsfond Natur og Univers project GREENLAKES (No. 9040-00195B) and PONDERFUL—POND Ecosystems for Resilient FUture Landscapes in a changing climate (Grant agreement ID: 869296)H2020 LC-CLA-2018–2019-2020).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation and data analysis were performed by MS, TD and LSJ. The first draft of the manuscript was written by MS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Martin Søndergaard.

Ethics declarations

Conflicts of interest

No conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Ethical Responsibilities approved by authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: José L. Attayde, Renata F. Panosso, Vanessa Becker, Juliana D. Dias & Erik Jeppesen / Advances in the Ecology of Shallow Lakes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Søndergaard, M., Davidson, T.A., Lauridsen, T.L. et al. Submerged macrophytes in Danish lakes: impact of morphological and chemical factors on abundance and species richness. Hydrobiologia 849, 3789–3800 (2022). https://doi.org/10.1007/s10750-021-04759-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04759-8

Keywords

Navigation