Skip to main content
Log in

Potential niche displacement in species of aquatic bdelloid rotifers between temperate and tropical areas

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Bdelloids are commonly found in freshwaters or limno-terrestrial habitats. No formal attempt has yet been performed to define bdelloid niche and to identify whether species respond in a clear, consistent, and quantifiable fashion to environmental parameters. Therefore, we analysed the correlation between the occurrence of common Rotaria species in Thailand and environmental variables, including limnological, climatic, and biotic features. We followed two approaches to determine the niche of the investigated species: performing regression models for each species and reconstructing the niche spaces occupied by each species using n-dimensional hypervolumes. The effect of local-scale limnological and large-scale climatic variables was almost negligible at explaining the occurrence and distribution of Rotaria species. Surprisingly, primary productivity, known in temperate areas to be a major positive correlate of the occurrence of R. neptunia, appeared to have no effect on this species when measured as chlorophyll a, and a negative effect when measured as cyanobacterial productivity. Biotic variables revealed that different Rotaria species have a similar response to environmental variables. Two main messages are supported: (i) no clear environmental features unambiguously affected bdelloids species; (ii) features that are relevant for limnological processes at temperate latitudes may not be applicable for explaining processes in tropical latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The R code to generate the analyses and the dataset are available on GitHub (https://github.com/StefanoMammola/Rotifers_Thai_Niche_Modelling/tree/main). Unpublished sequencing data of R. neptunoida have been deposited in the GenBank (GenBank Accession Numbers: MZ540086-MZ540089).

Code availability

Not applicable.

Data Availability

The R code to generate the analyses and the dataset are available on GitHub (https://github.com/StefanoMammola/Rotifers_Thai_Niche_Modelling/tree/main). Unpublished sequencing data of R. neptunoida have been deposited in the GenBank (GenBank Accession Numbers: MZ540086-MZ540089).

References

  • Amado, A. M., F. Meirelles-Pereira, L. O. Vidal, H. Sarmento, A. L. Suhett, V. F. Farjalla, J. B. Cotner & F. Roland, 2013. Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones. Frontiers in Microbiology 4: 167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Araújo, M. B. & A. Guisan, 2006. Five (or so) challenges for species distribution modelling. Journal of biogeography 33: 1677–1688.

    Article  Google Scholar 

  • Araújo, M. B., R. P. Anderson, A. M. Barbosa, C. M. Beale, C. F. Dormann, R. Early, R. A. Garcia, A. Guisan, L. Maiorano, B. Naimi, R. B. O’Hara, N. E. Zimmermann & C. Rahbek, 2019. Standards for distribution models in biodiversity assessments. Science Advances 5: eaat4858.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barner, A. K., K. E. Coblentz, S. D. Hacker & B. A. Menge, 2018. Fundamental contradictions among observational and experimental estimates of non-trophic species interactions. Ecology 99: 557–566.

    Article  PubMed  Google Scholar 

  • Bartoń, K., 2020. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn.

  • Bass, D. & J. Boenigk, 2011. Everything is everywhere: a twenty-first century de-/reconstruction with respect to protists. In Fontaneto, D. (ed), Biogeography of microscopic organisms: Is everything small everywhere?. Cambridge University Press, New York: 88–110.

    Chapter  Google Scholar 

  • Bērziņš, B. & B. Pejler, 1987. Rotifer occurrence in relation to pH. Hydrobiologia 147: 107–116.

    Article  Google Scholar 

  • Bērziņš, B. & B. Pejler, 1989a. Rotifer occurrence and trophic degree. Hydrobiologia 182: 171–180.

    Article  Google Scholar 

  • Bērziņš, B. & B. Pejler, 1989b. Rotifer occurrence in relation to oxygen content. Hydrobiologia 183: 165–172.

    Article  Google Scholar 

  • Bērziņš, B. & B. Pejler, 1989c. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231.

    Article  Google Scholar 

  • Bielańska-Grajner, I. & A. Cudak, 2014. Effects of salinity on species diversity of rotifers in anthropogenic water bodies. Polish Journal of Environmental Studies 23: 27–34.

    Google Scholar 

  • Bielańska-Grajner, I., T. Mieczan & A. Cieplok, 2017. Ecology of moss-dwelling rotifers in a raised bog: Differentiation of rotifer communities in microhabitats. Biologia 72: 175–183.

    Article  Google Scholar 

  • Bivand, R. S., E. Pebesma & V. Gomez-Rubio, 2013. Applied spatial data analysis with R (2nd ed.). Springer-Verlag, New York.

    Book  Google Scholar 

  • Blanchet, F. G., K. Cazelles & D. Gravel, 2020. Co-occurrence is not evidence of ecological interactions. Ecology Letters 23: 1050–1063.

    Article  PubMed  Google Scholar 

  • Blonder, B., 2018. Hypervolume: High Dimensional Geometry and Set Operations Using Kernel Density Estimation, Support Vector Machines, and Convex Hulls. R package version 2.0.11. https://CRAN.R-project.org/package=hypervolume.

  • Blonder, B., 2019. Hypervolume concepts in niche- and trait-based ecology. Ecography 41: 1441–1455.

    Article  Google Scholar 

  • Blonder, B., C. Lamanna, C. Violle & B. J. Enquist, 2014. The n-dimensional hypervolume. Global Ecology and Biogeography 23: 595–609.

    Article  Google Scholar 

  • Blonder, B., C. B. Morrow, B. Maitner, D. J. Harris, C. Lamanna, C. Violle, B. J. Enquist & A. J. Kerkhoff, 2018. New approaches for delineating n-dimensional hypervolumes. Methods in Ecology and Evolution 9: 305–319.

    Article  Google Scholar 

  • Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic sciences 73: 1–14.

    Article  CAS  Google Scholar 

  • Brazeau, H. A. & B. S. Schamp, 2019. Examining the link between competition and negative co-occurrence patterns. Oikos 128: 1358–1366.

    Article  Google Scholar 

  • Bunioto, T. C. & M. S. Arcifa, 2007. Effects of food limitation and temperature on cladocerans from a tropical Brazilian lake. Aquatic Ecology 41: 569–578.

    Article  CAS  Google Scholar 

  • Cakil, Z. V., G. Garlasché, N. Iakovenko, A. Di Cesare, E. M. Eckert, R. Guidetti, L. Hamdan, K. Janko, D. Lukashanez, L. Rebecchi, S. Schiaparelli, T. Sforzi, E. S. Kašparová, A. Velasco-Castrillon, E. Walsh & D. Fontaneto, 2021. Comparative phylogeography reveals consistently shallow genetic diversity in a mitochondrial marker in Antarctic bdelloid rotifers. Journal of Biogeography 48: 1797–1809.

    Article  Google Scholar 

  • Cardoso, P., F. Rigal & J. C. Carvalho, 2015. BAT – Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods in Ecology and Evolution 6: 232–236.

    Article  Google Scholar 

  • Cardoso, P., S. Mammola, F. Rigal & J. C. Carvalho, 2020. BAT: Biodiversity Assessment Tools. R package version 2.5.0. https://cran.r-project.org/package=BAT.

  • Carvalho, J. C. & P. Cardoso, 2020. Decomposing the causes for niche differentiation between species using hypervolumes. Frontiers in Ecology and Evolution 8: 243.

    Article  Google Scholar 

  • Carlson, R. E., 1977. A trophic state index for lakes. Limnology and oceanography 22: 361–369.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., B. M. Arani, P. C. Hanson, M. Scheffer, E. H. Stanley & E. Van Nes, 2020. Stochastic dynamics of Cyanobacteria in long-term high-frequency observations of a eutrophic lake. Limnology and Oceanography Letters 5: 331–336.

    Article  CAS  Google Scholar 

  • Chase, J. M., 2003. Community assembly: when should history matter?. Oecologia 136: 489–498.

    Article  PubMed  Google Scholar 

  • Choedchim, W., K. Van Damme & S. Maiphae, 2017. Spatial and temporal variation of Cladocera in a tropical shallow lake. International Journal of Limnology 53: 233–252.

    Article  Google Scholar 

  • Collart, F., L. Hedenäs, O. Broennimann, A. Guisan & A. Vanderpoorten, 2021. Intraspecific differentiation: Implications for niche and distribution modelling. Journal of Biogeography 48: 415–426.

    Article  Google Scholar 

  • Crawley, M. J., 2012. The R book. Second edition. Chichester, Wiley.

    Book  Google Scholar 

  • Darchambeau, F., H. Sarmento & J. P. Descy, 2014. Primary production in a tropical large lake: The role of phytoplankton composition. Science of The Total Environment 473: 178–188.

    Article  CAS  PubMed  Google Scholar 

  • Dittrich, J., J. D. Dias, C. C. Bonecker, F. A. Lansac-Tôha & A. A. Padial, 2016. Importance of temporal variability at different spatial scales for diversity of floodplain aquatic communities. Freshwater Biology 61: 316–327.

    Article  Google Scholar 

  • Dodson, S., 1988. The ecological role of chemical stimuli for the zooplankton: Predator-avoidance behavior in Daphnia. Limnology and oceanography 33: 1431–1439.

    Google Scholar 

  • Donner, J., 1965. Ordnung Bdelloidea (Rotatoria, Radertiere). Akademie Verlag, Berlin.

    Google Scholar 

  • Dumont, H. J., 1983. Biogeography of rotifers. Hydrobiologia 104: 19-30.

    Article  Google Scholar 

  • Erdoğan, S. & M. Kaya, 2013. The biodiversity of Bdelloid rotifers on a single rock affected by cardinal directions. Journal of Earth Science Research 1: 21–24.

    Article  Google Scholar 

  • Fick, S. E. & R. J. Hijmans, 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315.

    Article  Google Scholar 

  • Fontaneto, D., 2019. Long-distance passive dispersal in microscopic aquatic animals. Movement Ecology 7: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontaneto, D., G. F. Ficetola, R. Ambrosini & C. Ricci, 2006. Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals?. Global Ecology and Biogeography 15: 153–162.

    Article  Google Scholar 

  • Fontaneto, D., T. G. Barraclough, K. Chen, C. Ricci & E. A. Herniou, 2008. Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Molecular Ecology 17: 3136–3146.

    Article  CAS  PubMed  Google Scholar 

  • Fontaneto, D. & R. Ambrosini, 2010. Spatial niche partitioning in epibiont rotifers on the waterlouse Asellus aquaticus. Limnology and Oceanography 55: 1327–1337.

    Article  Google Scholar 

  • Fontaneto, D., M. Westberg & J. Hortal, 2011. Evidence of weak habitat specialisation in microscopic animals. PLoS One 6: e23969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaneto, D., A. M. Barbosa, H. Segers & M. Pautasso, 2012. The ‘rotiferologist’ effect and other global correlates of species richness in monogonont rotifers. Ecography 35: 174–182.

    Article  Google Scholar 

  • Fontaneto, D. & J. Hortal, 2013. At least some protist species are not ubiquitous. Molecular Ecology 22: 5053–5055.

    Article  PubMed  Google Scholar 

  • Fox, J. & S. Weisberg, 2019. An R Companion to Applied Regression (3rd edn.). Thousand Oaks, CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

  • Freilich, M. A., E. Wieters, B. R. Broitman, P. A. Marquet & S. A. Navarrete, 2018. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities?. Ecology 99: 690–699.

    Article  PubMed  Google Scholar 

  • Gilbert, J. J., 2009. Predator-specific inducible defenses in the rotifer Keratella tropica. Freshwater Biology 54: 1933–1946.

    Article  Google Scholar 

  • Gilbert, J. J., 2014. Morphological and behavioral responses of a rotifer to the predator Asplanchna. Journal of Plankton Research 36: 1576–1584.

    Article  Google Scholar 

  • Green, J., 1972. Latitudinal variation in associations of planktonic Rotifera. Journal of Zoology 167: 31–39.

    Article  Google Scholar 

  • Green, J. & B. J. Bohannan, 2006. Spatial scaling of microbial biodiversity. Trends in Ecology & Evolution 21: 501–507.

    Article  Google Scholar 

  • Hall, S. R., N. K. Pauliukonis, E. L. Mills, L. G. Rudstam, C. P. Schneider, S. J. Lary & F. Arrhenius, 2003. A comparison of total phosphorus, chlorophyll a, and zooplankton in embayment, nearshore, and offshore habitats of Lake Ontario. Journal of Great Lakes Research 29: 54–69.

    Article  CAS  Google Scholar 

  • Hellmann, J. J., J. E. Byers, B. G. Bierwagen & J. S. Dukes, 2008. Five potential consequences of climate change for invasive species. Conservation Biology 22: 534–543.

    Article  PubMed  Google Scholar 

  • Honaker, J., G. King & M. Blackwell, 2011. Amelia II: A program for missing data. Journal of Statistical Software 45: 1–47.

    Article  Google Scholar 

  • Huszar, V. L. M, N. F. Caraco, F. Roland & J. Cole, 2006. Nutrient-chlorophyll relationships in tropical-subtropical lakes: do temperate models fit?. In Martinelli, L. A. & R. W. Howarth (eds), Nitrogen Cycling in the Americas: Natural and Anthropogenic Influences and Controls. Springer, Dordrecht: 239–250.

    Google Scholar 

  • Hu, Z. M., Q. S. Zhang, J. Zhang, J. M. Kass, S. Mammola, P. Fresia, S. G. A. Draisma, J. Assis, A. Jueterbock, M. Yokota & Z. Zhang, 2021. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Molecular Ecology 30: 3840–3855.

    Article  PubMed  Google Scholar 

  • Jaturapruek, R., D. Fontaneto, P. Meksuwan, P. Pholpunthin & S. Maiphae, 2018. Planktonic and periphytic bdelloid rotifers from Thailand reveal a species assemblage with a combination of cosmopolitan and tropical species. Systematics and Biodiversity 16: 128–141.

    Article  Google Scholar 

  • Jaturapruek, R., D. Fontaneto & S. Maiphae, 2020. The influence of environmental variables on bdelloid rotifers of the genus Rotaria in Thailand. Journal of Tropical Ecology 36: 267–274.

    Article  Google Scholar 

  • Kaya, M., D. Fontaneto, H. Segers & A. AltindaĞ, 2010. Temperature and salinity as interacting drivers of species richness of planktonic rotifers in Turkish continental waters. Journal of Limnology 69: 297–304.

    Article  Google Scholar 

  • Kuczyńska-Kippen, N., 2018. The use of bdelloids in reference to rotifer biocoenotic indices as an indicator of the ecological state of small field water bodies: The effect of macrophytes, shading and trophic state of water. Ecological Indicators 89: 576–583.

    Article  Google Scholar 

  • Kutikova, L. A., 2003. Bdelloid rotifers (Rotifera, Bdelloidea) as a component of soil and land biocenoses. Biology Bulletin of the Russian Academy of Sciences 30: 271–274.

    Article  Google Scholar 

  • Leasi, F., C. Q. Tang, W. H. De Smet & D. Fontaneto, 2013. Cryptic diversity with wide salinity tolerance in the putative euryhaline Testudinella clypeata (Rotifera, Monogononta). Zoological Journal of the Linnean Society 168: 17–28.

    Article  Google Scholar 

  • Lewis Jr, W. M., 1987. Tropical limnology. Annual review of ecology and systematics 18: 159–184.

    Article  Google Scholar 

  • Liu, X., T. M. Blackburn, T. Song, X. Wang, C. Huang & Y. Li, 2020. Animal invaders threaten protected areas worldwide. Nature Communications 11: 2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lougheed, V. L. & P. Chow-Fraser, 2002. Development and use of a zooplankton index of wetland quality in the Laurentian Great Lakes basin. Ecological Applications 12: 474–486.

    Article  Google Scholar 

  • Lüdecke, D., D. Makowski, P. Waggoner & I. Patil, 2020. Performance: Assessment of Regression Models Performance. R Package Version 0.4.6. https://CRAN.R-project.org/package=performance.

  • Macário, I. P. E., B. B. Castro, M. I. S. Nunes, S. C. Antunes, C. Pizarro, C. Coelho, F. Gonçalves & D. R. de Figueiredo, 2015. New insights towards the establishment of phycocyanin concentration thresholds considering species-specific variability of bloom-forming cyanobacteria. Hydrobiologia 757: 155–165.

    Article  CAS  Google Scholar 

  • Mammola, S., 2019. Assessing similarity of n-dimensional hypervolumes: Which metric to use?. Journal of Biogeography 46: 2012–2023.

    Article  Google Scholar 

  • Mammola, S. & P. Cardoso, 2020. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods in Ecology and Evolution 11: 986–995.

    Article  Google Scholar 

  • Mantovano, T., L. P. Diniz, E. D. O. da Conceição, J. Rosa, C. C. Bonecker, D. Bailly, J. H. D. Ferreira, T. F. Rangel & F. A. Lansac-Tôha, 2021. Ecological niche models predict the potential distribution of the exotic rotifer Kellicottia bostoniensis (Rousselet, 1908) across the globe. Hydrobiologia 848: 299–309.

    Article  Google Scholar 

  • Marchant, R., A. Franzetti, S. G. Pavlostathis, D. O. Tas, I. Erdbrűgger, A. Űnyayar, M. A. Mazmanci & I. M. Banat, 2008. Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport?. Applied Microbiology and Biotechnology 78: 841–852.

    Article  CAS  PubMed  Google Scholar 

  • Martínez, A., G. García-Gómez, A. García-Herrero, N. Sánchez, F. Pardos, A. Izquierdo-Muñoz, D. Fontaneto & S. Mammola, 2021. Habitat differences filter functional diversity of low dispersive microscopic animals (Acari, Halacaridae). Hydrobiologia 848: 2681–2698.

    Article  Google Scholar 

  • Martiny, J. B. H., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Øvreås, A. L. Reysenbach, V. H. Smith & J. T. Staley, 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4: 102–112.

    Article  CAS  PubMed  Google Scholar 

  • May, L. & M. O’Hare, 2005. Changes in rotifer species composition and abundance along a trophic gradient in Loch Lomond, Scotland, UK. Hydrobiologia 546: 397–404.

    Article  Google Scholar 

  • Mills, S., J. A. Alcántara-Rodríguez, J. Ciros-Pérez, A. Gómez, A. Hagiwara, K. H. Galindo, C. D. Jersabek, R. Malekzadeh-Viayeh, F. Leasi, J. S. Lee, D. B. Mark Welch, S. Papakostas, S. Riss, H. Segers, M. Serra, R. Shiel, R. Smolak, T. W. Snell, C. P. Stelzer, C. Q. Tang, R. L. Wallace, D. Fontaneto & E. J. Walsh, 2017. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796: 39–58.

    Article  CAS  Google Scholar 

  • Moles, A. T. & J. Ollerton, 2016. Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea?. Biotropica 48: 141–145.

    Article  Google Scholar 

  • Nogrady, T., 1982. Correlation of rotifer associations in a chain of lakes fed by reclaimed sewage. Hydrobiologia 89: 277–284.

    Article  Google Scholar 

  • Obertegger, U., B. Thaler & G. Flaim, 2010. Rotifer species richness along an altitudinal gradient in the Alps. Global Ecology and Biogeography 19: 895–904.

    Article  Google Scholar 

  • Obertegger, U. & M. Manca, 2011. Response of rotifer functional groups to changing trophic state and crustacean community. Journal of Limnology 70: 231–238.

    Article  Google Scholar 

  • Obertegger, U., D. Fontaneto & G. Flaim, 2012. Using DNA taxonomy to investigate the ecological determinants of plankton diversity: explaining the occurrence of Synchaeta spp. (Rotifera, Monogononta) in mountain lakes. Freshwater Biology 57: 1545–1553.

    Article  Google Scholar 

  • Parysek, M. & B. Pietrzak, 2021. Weak swimming response of a bdelloid rotifer to chemical cues of a native copepod predator. Journal of Ethology 39: 135–139.

    Article  Google Scholar 

  • Pejler, B., 1995. Relation to habitat in rotifers. Hydrobiologia 313: 267–278.

    Article  Google Scholar 

  • Pejler, B. & N. Bērziņš, 1993. On choice of substrate and habitat in bdelzoid rotifers. Hydrobiologia 255: 333–338.

    Article  Google Scholar 

  • Peterson, B. G. & P. Carl, 2020. Performance Analytics: Econometric Tools for Performance and Risk Analysis. R package version 2.0.4. https://CRAN.R-project.org/package=PerformanceAnalytics.

  • Quinlan, R., A. Filazzola, O. Mahdiyan, A. Shuvo, K. Blagrave, C. Ewins, L. Moslenko, D. K. Gray, C. M. O'Reilly & S. Sharma, 2021. Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnology and Oceanography 66: 392–404.

    Article  CAS  Google Scholar 

  • R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna. https://www.R-project.org/.

  • Ricci, C., 1987. Ecology of bdelloids: how to be successful. Hydrobiologia 147: 117–127.

    Article  Google Scholar 

  • Sa-Ardrit, P., P. Pholpunthin & H. Segers, 2013. A checklist of the freshwater rotifer fauna of Thailand (Rotifera, Monogononta, Bdelloidea). Journal of Limnology 72: 361–375.

    Article  Google Scholar 

  • Santangelo, J. M., B. N. Soares, T. Paes, P. Maia-Barbosa, R. Tollrian & R. L. Bozelli, 2018. Effects of vertebrate and invertebrate predators on the life history of Daphnia similis and Moina macrocopa (Crustacea: Cladocera). In Annales de Limnologie-International Journal of Limnology 54: 25.

    Article  Google Scholar 

  • Sarma, S. S. S., S. Nandini & R. D. Gulati, 2005. Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542: 315–333.

    Article  Google Scholar 

  • Sarmento, H., 2012. New paradigms in tropical limnology: the importance of the microbial food web. Hydrobiologia 686: 1–14.

    Article  Google Scholar 

  • Segers, H. & W. H. De Smet, 2007. Diversity and endemism in Rotifera: a review, and Keratella Bory de St Vincent. Biodiversity and Conservation 71: 303–316.

    Google Scholar 

  • Sládeček, V., 1983. Rotifers as indicators of water quality. Hydrobiologia 100: 169–201.

    Article  Google Scholar 

  • Smith, A. B., W. Godsoe, F. Rodríguez-Sánchez, H. H. Wang & D. Warren, 2019. Niche estimation above and below the species level. Trends in Ecology & Evolution 34: 260–273.

    Article  Google Scholar 

  • Soberón, J. & M. Nakamura, 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences 106(Supplement 2): 19644–19650.

    Article  Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1987. Multiple-species induction of morphological defenses in the rotifer Keratella testudo. Ecology 68: 370–378.

    Article  Google Scholar 

  • Thurman, L. L., A. K. Barner, T. S. Garcia & T. Chestnut, 2019. Testing the link between species interactions and species co-occurrence in a trophic network. Ecography 42: 1658–1670.

    Article  Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008. Any way the wind blows-frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134.

    Article  Google Scholar 

  • Viayeh, R. M. & M. Špoljar, 2012. Structure of rotifer assemblages in shallow waterbodies of semi-arid northwest Iran differing in salinity and vegetation cover. Hydrobiologia 686: 73–89.

    Article  CAS  Google Scholar 

  • Wallace, R. L., T. W. Snell, C. Ricci & N. Thomas, 2006. Rotifera. 1, biology, ecology and systematics. Backhuys Publishers and Ghent, Belgium.

    Google Scholar 

  • Wei, T. & V. Simko, 2017. R package "corrplot": Visualization of a Correlation Matrix (Version 0.84). https://github.com/taiyun/corrplot.

  • Wickham, H., 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York.

    Book  Google Scholar 

  • Wilson, C. G. & P. W. Sherman, 2010. Anciently asexual bdelloid rotifers escape lethal fungal parasites by drying up and blowing away. Science 327: 574–576.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, A. E., O. Sarnelle & A. R. Tillmanns, 2006. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta‐analyses of laboratory experiments. Limnology and Oceanography 51: 1915–1924.

    Article  Google Scholar 

  • Wüest, R. O., N. E. Zimmermann, D. Zurell, J. M. Alexander, S. A. Fritz, C. Hof, H. Kreft, S. Normand, J. S. Cabral, E. Szekely, W. Thuiller, M. Wikelski & D. N. Karger, 2020. Macroecology in the age of Big Data – Where to go from here?. Journal of Biogeography 47: 1–12.

    Article  Google Scholar 

  • Xiang, X., R. Jiang, Y. Tao, Y. Chen & Y. Xi, 2016. Differences in life history characteristics among three sympatric evolutionary species of the Rotaria rotatoria complex. Journal of Freshwater Ecology 31: 351–360.

    Article  CAS  Google Scholar 

  • Xiao, X., E. P. White, M. B. Hooten & S. L. Durham, 2011. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92: 1887–1894.

    Article  PubMed  Google Scholar 

  • Zhang, Z., S. Mammola, W. Xian & H. Zhang, 2020. Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China. Diversity and Distributions 26: 126–137.

    Article  Google Scholar 

  • Zhang, Z., J. M. Kass, S. Mammola, I. Koizumi, X. Li, K. Tanaka, K. Ikeda, T. Suzuki, M. Yokota & N. Usio, 2021. Lineage-level distribution models lead to more realistic climate change predictions for a threatened crayfish. Diversity and Distribution 27: 684–695.

    Article  Google Scholar 

  • Zuur A. F., E. N. Ieno, N. J. Walker, A. A. Savaliev & G. M. Smith, 2009. Mixed effect models and extensions in ecology with R. Springer-Verlag, New York.

    Book  Google Scholar 

  • Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in ecology and evolution 1: 3–14.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Science Achievement Scholarship of Thailand (SAST), Research Career Development Grant, Thailand Research Fund (RSA6080032) and Department of Zoology, Faculty of Science, Kasetsart University, Thailand.

Funding

This research was financially supported by the Science Achievement Scholarship of Thailand (SAST), Research Career Development Grant, Thailand Research Fund (RSA6080032) and Department of Zoology, Faculty of Science, Kasetsart University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supiyanit Maiphae.

Ethics declarations

Conflict of interest

All authors have no conflict of interests.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

The present study was approved by the ethics committee of Kasetsart University (approval no. ACKU 59-SCI-004) for collecting Rotaria specimens.

Additional information

Handling editor: John M. Melack.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2021_4681_MOESM1_ESM.pdf

Pairplot representing the 7-dimensional hypervolume for all the species included in the database. Large points with white borders represent centroids of each hypervolume. 4000 random points were arbitrarily sampled from each hypervolume to delineate its shape and boundary, whereas the contour lines are drawn exclusively for visual presentation. Supplementary file1 (PDF 16543 kb)

10750_2021_4681_MOESM2_ESM.pdf

Pairplot representing the 5-dimensional hypervolume for all the species with enough occurrences to generate an hypervolume, when reducing the number of analysed samples but including chlorophyll a and phycocyanin as proxies of primary productivity. Large points with white borders represent centroids of each hypervolume. 4000 random points were arbitrarily sampled from each hypervolume to delineate its shape and boundary, whereas the contour lines are drawn exclusively for visual presentation. Supplementary file2 (PDF 14127 kb)

10750_2021_4681_MOESM3_ESM.xlsx

Output of the statistical models, performed on the large set of samples excluding the measurements of primary productivity, to assess the role of the groups of explanatory variables (limnological, climatic, or biotic) on the occurrence of the three common focal species. LR test (LR), degrees of freedom (df), and p values (p) as Anova table from generalised linear model are reported, together with relative importance (RI) from multimodel averaging. Results of Moran’s I tests are reported for each model. Significant P values smaller than the selected threshold of 0.01 are marked in bold. Supplementary file3 (XLSX 11 kb)

10750_2021_4681_MOESM4_ESM.xlsx

Output of the statistical models, performed on the subset of samples with the inclusion of proxies of primary productivity, to assess the role of the groups of explanatory variables (limnological, climatic, or biotic) on the occurrence of the three common focal species. LR test (LR), degrees of freedom (df), and p values (p) as Anova table from generalised linear model are reported, together with relative importance (RI) from multimodel averaging. Results of Moran’s I tests are reported for each model. Significant P values smaller than the selected threshold of 0.01 are marked in bold. Supplementary file4 (XLSX 11 kb)

10750_2021_4681_MOESM5_ESM.xlsx

Niche statistics for the three species in the reduced dataset with the inclusion of proxies of primary productivity. On the diagonal, volume of the niche (note that volume is unitless). Above the diagonal, distance between hypervolume centroids. Below the diagonal, differentiation among n-dimensional hypervolumes measured as total = shift + expansion/contraction (Carvalho & Cardoso, 2020; Mammola & Cardoso, 2020). Supplementary file5 (XLSX 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaturapruek, R., Fontaneto, D., Mammola, S. et al. Potential niche displacement in species of aquatic bdelloid rotifers between temperate and tropical areas. Hydrobiologia 848, 4903–4918 (2021). https://doi.org/10.1007/s10750-021-04681-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04681-z

Keywords

Navigation