Skip to main content

Advertisement

Log in

Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport?

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thermophilic soil geobacilli isolated from cool temperate geographical zone environments have been shown to be metabolically inactive under aerobic conditions at ambient temperatures (−5 to 25°C). It is now confirmed that a similar situation exists for their anaerobic denitrification activity. It is necessary therefore to determine the mechanisms that sustain the observed significant viable populations in these soils. Population analysis of thermophiles in rainwater and air samples has shown different species compositions which support the view that long distance global transport and deposition in rainwater is a possible source of replenishment of the soil thermophile populations. Survival experiments using a representative Geobacillus isolate have indicated that while cells lose viability rapidly at most temperatures, populations can increase only when the temperature allows growth to take place at a rate which exceeds death rate. Long term (9-month) experiments at 4°C show population increases which can be accounted for by very slow growth rates complemented by negligible death rates. These results are interpreted in the context of current hypotheses on the biogeography patterns of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    Article  CAS  Google Scholar 

  • Andersson M, Laukkanen M, Nurmiaho-Lassila EL, Rainet FA, Niemelä SI, Salkinoja-Salonen M (1995) Bacillus thermosphericus sp. nov. a new thermophilic ureolytic Bacillus isolated from air. System Appl Microbiol 18:203–220

    Article  Google Scholar 

  • Bauer H, Kasper-Giebl A, Löflund M, Giebl H, Hitzenberger R, Zibuschka F, Puxbaum H (2002) The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmospheric Res 64:109–119

    Article  CAS  Google Scholar 

  • Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subarrial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    Article  CAS  Google Scholar 

  • Bonjour F, Graber A, Aragno M (1988) Isolation of Bacillus schlegelii, a thermophilic, hydrogen oxidizing, aerobic autotroph, from geothermal and nongeothermal environments. Microbial Ecol 16:331–337

    Article  CAS  Google Scholar 

  • Bovallius A, Roffey R, Henningson E (1980) Long-range transmission of bacteria. Ann NY Acad Sci 353:186–200

    Article  CAS  Google Scholar 

  • Caracciolo AB, Grenni P, Cupo C, Rossetti S (2005) In situ analysis of native microbial communities in complex samples with high particulate loads. FEMS Microbiol Lett 253:55–58

    Article  Google Scholar 

  • Casareto B, Suzuki Y, Okada K, Morita M (1996) Biological micro-particles in rain water. Geophys Res Lett 23:173–176

    Article  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucl Acids Res 33:D294–D296

    Article  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucl Acids Res 16:10881–10890

    Article  CAS  Google Scholar 

  • Fenchel T, Esteban GF, Finlay BJ (1997) Local versus global diversity of microorganisms: cryptic diversity of ciliated protozoa. Oikos 80:220–225

    Article  Google Scholar 

  • Fortina MG, Mora D, Schumann P, Parini C, Manachini PL, Stackebrandt E (2001) Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmed et al. 2000) comb. nov. Int J Syst Evol Microbiol 51:2063–2071

    Article  CAS  Google Scholar 

  • Fuzzi S, Mandrioli P, Perfetto A (1997) Fog droplets—an atmospheric source of secondary biological aerosol particles. Atmospheric Environ 31:287–290

    Article  CAS  Google Scholar 

  • Griffin DW, Kellogg CA, Garrison VH, Shinn EA (2002) The global transport of dust. American Scientist 90:228–235

    Article  Google Scholar 

  • Harmsen H, Prieur D, Jeanthon C (1997) Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl Environ Microbiol 63:4061–4068

    Article  CAS  Google Scholar 

  • Hughes-Martiny JB, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Greem JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  Google Scholar 

  • Imshenetzky AA, Lysenko SV, Kazakov GA (1978) Upper boundary of the biosphere. Appl Env Microbiol 35:1–5

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5:150–163

    Article  CAS  Google Scholar 

  • Marchant R, Banat IM, Rahman TJ, Berzano M (2002a) What are high temperature bacteria doing in cold environments? Trends Microbiol 10:120–121

    Article  CAS  Google Scholar 

  • Marchant R, Banat IM, Rahman TJ, Berzano M (2002b) The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol 4:595–602

    Article  CAS  Google Scholar 

  • Marchant R, Sharkey FH, Banat IM, Rahman TJ, Perfumo A (2006) The degradation of n-hexadecane in soil by thermophilic geobacilli. FEMS Microbiol Ecol 56:44–54

    Article  CAS  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    Article  CAS  Google Scholar 

  • Nazina TN, Lebedeva EV, Poltaraus AB, Tourova TP, Grigoryan AA, Sokolova DS, Lysenko AM, Osipov GA (2004) Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol 54:2019–2024

    Article  CAS  Google Scholar 

  • Pavlostathis SG, Marchant R, Banat IM, Ternan N, McMullan G (2006) High growth rate and substrate exhaustion results in rapid cell death and lysis in the thermophilic bacterium Geobacillus thermoleovorans. Biotech Bioeng 95:84–95

    Article  CAS  Google Scholar 

  • Pernthaler J, Glöckner F-O, Schönhuber W, Amann R (2001) Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods in Microbiol 30:207–226

    Article  CAS  Google Scholar 

  • Rahman TJ, Marchant R, Banat IM (2004) Distribution and molecular investigation of highly thermophilic bacteria associated with cool soil environments. Biochem Soc Transactions 32:209–213

    Article  CAS  Google Scholar 

  • Saffary R, Nandakumar R, Spencer D, Robb FT, Davila JM Swartz M, Ofman L, Thomas RJ, DiRuggiero J (2002) Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight. FEMS Microbiol Lett 215:163–168

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242

    Article  Google Scholar 

  • Zarilla KA, Perry JJ (1987) Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore-forming bacteria. System Appl Microbiol 9:258–264

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Andrea Franzetti gratefully acknowledges the award of a FEMS fellowship which supported his work on this project. This work was also partially funded by the C.E.C. EU Structural Funds, Building Sustainable Prosperity Measure 5.1 ‘Sustainable Management of the Environment and Promotion of the Natural and Built Heritage (BSP7473)’, Environment and Heritage Service, N. Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. Banat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchant, R., Franzetti, A., Pavlostathis, S.G. et al. Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport?. Appl Microbiol Biotechnol 78, 841–852 (2008). https://doi.org/10.1007/s00253-008-1372-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1372-y

Keywords

Navigation