Skip to main content
Log in

European native Myriophyllum spicatum showed a higher \({\text{HCO}}_{3}^{ - }\) use capacity than alien invasive Myriophyllum heterophyllum

  • INVASIVE SPECIES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Light, temperature, and the availability of carbon are three major drivers of submerged plant growth, photosynthesis, and competitive strength. A laboratory study using a three factorial experimental design (light × temperature × CO2) was carried out to evaluate growth responses (RGR (relative growth rate), LDMC (leaf dry matter content), and root:shoot ratio) and physiological changes (pigment characteristics and net photosynthesis under CO2 depletion) in the European native Myriophyllum spicatum and the non-native invasive M. heterophyllum to changes in the three variables. Both species showed temperature optima of 21°C and highest growth rates under high-light and high CO2 conditions. Additionally, the capacity of both to use \({\text{HCO}}_{3}^{ - }\) was significantly higher in plants acclimated to CO2 depletion than for plants growing in CO2-rich water. Summarizing, both species showed their ability to grow under variable conditions, but M. spicatum is the better \({\text{HCO}}_{3}^{ - }\) user and showed better acclimation in growth and physiological parameters to CO2 depletion. Overall, native M. spicatum reached higher growth rates and showed a better acclimation to low CO2 conditions than the non-native M. heterophyllum. Thus, the \({\text{HCO}}_{3}^{ - }\) use capacity alone cannot explain the success of evergreen M. heterophyllum in formerly M. spicatum-dominated waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barko, J. W. & R. M. Smart, 1981. Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs 51: 219–235.

    Article  Google Scholar 

  • Barko, J. W. & G. J. Filbin, 1983. Influences of light and temperature on chlorophyll composition in submerged freshwater macrophytes. Aquatic Botany 15: 249–255.

    Article  CAS  Google Scholar 

  • Bowes, G., 2011. Single-cell C4 photosynthesis in aquatic plants. In Rhagavendra, A. S. & R. F. Sage (eds), Advances in Photosynthesis, Vol. 32., C4 photosynthesis and related CO2 concentrating mechanisms Springer, Dordrecht.

    Google Scholar 

  • Bowes, G. & M. E. Salvucci, 1989. Plasticity in the photosynthetic carbon metabolism of submerged aquatic macrophytes. Aquatic Botany 34: 233–266.

    Article  CAS  Google Scholar 

  • Casati, P., M. V. Lara & C. S. Andreo, 2000. Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submerged aquatic species. Plant Physiology 123: 1611–1621.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cook, C. D. K., 1985. Range extensions of aquatic vascular plant species. Journal of Aquatic Plant Management 23: 1–6.

    Google Scholar 

  • Elger, A. & D. Lemoine, 2005. Determinants of macrophyte palatability to the pond snail Lymnaea stagnalis. Freshwater Biology 50: 86–95.

    Article  Google Scholar 

  • Eusebio Malheiro, A. C., P. Jahns & A. Hussner, 2013. CO2 availability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum. Aquatic Botany 110: 31–37.

    Article  Google Scholar 

  • Färber, A., A. J. Young, A. V. Ruban, P. Horton & P. Jahns, 1997. Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photo-synthetic membranes of higher plants: the relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching. Plant Physiology 115: 1609–1618.

    PubMed Central  PubMed  Google Scholar 

  • Fornoff, F. & E. M. Gross, 2014. Induced defense mechanism in an aquatic angiosperm to insect herbivory. Oecologia 175: 173–185.

    Article  PubMed  Google Scholar 

  • Garnier, E., B. Shipley, C. Roumet & G. Laurent, 2001. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology 15: 688–695.

    Article  Google Scholar 

  • Grace, J. B. & R. G. Wetzel, 1978. The production biology of Eurasian watermilfoil Myriophyllum spicatum L.: a review. Journal of Aquatic Plant Management 16: 1–11.

    Google Scholar 

  • Hussner, A., 2008. Ökologische und ökophysiologische Charakteristika aquatischer Neophyten in Nordrhein-Westfalen. Dissertation, Heinrich-Heine-Universität Düsseldorf.

  • Hussner, A., 2012. Alien aquatic plants in European countries. Weed Research 52: 297–306.

    Article  Google Scholar 

  • Hussner, A., H. P. Hoelken & P. Jahns, 2010a. Low light acclimated submerged freshwater plants show a pronounced sensitivity to increasing irradiances. Aquatic Botany 93: 17–24.

    Article  Google Scholar 

  • Hussner, A., K. van de Weyer, E. M. Gross & S. Hilt, 2010b. Comments on increasing number and abundance of non indigenous aquatic macrophyte species in Germany. Weed Research 50: 519–526.

    Article  Google Scholar 

  • Hussner, A., D. Hofstra & P. Jahns, 2011. Diurnal courses of net photosynthesis and photosystem II quantum efficiency of submerged Lagarosiphon major under natural light conditions. Flora 206: 904–909.

    Article  Google Scholar 

  • Klee, O., 1998. Wasser untersuchen. Quelle & Meyer, Wiesbaden.

    Google Scholar 

  • Lara, M. L. & C. S. Andreo, 2005. Photosynthesis in nontypical C4 species. In Pessarakli, M. (ed.), Handbook of Photosynthesis, 2nd ed. Taylor & Francis, Baton Rouge.

    Google Scholar 

  • Lebreton, A., 2013. Myriophyllum heterophyllum Michaux (Haloragaceae) in Haute-Vienne (Limousin, France), and status of this invasive plant in France and Europe. EPPO Bulletin 43: 180–192.

    Article  Google Scholar 

  • Maberly, S.C. & T.V. Madsen, 1998. Affinity for CO2 in relation to the ability of freshwater macrophytes to use \({\text{HCO}}_{3}^{ - }\). Functional Ecology 12: 99–106.

  • Maberly, S. C. & T. V. Madsen, 2002. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Functional Plant Biology 29: 393–405.

    Article  CAS  Google Scholar 

  • Madsen, T. V. & K. Sand-Jensen, 1991. Photosynthetic carbon assimilation in aquatic macrophytes. Aquatic Botany 41: 5–40.

    Article  CAS  Google Scholar 

  • Madsen, T.V., Maberly, S.C. & G. Bowes, 1996. Photosynthetic acclimation of submersed angiosperms to CO2 and \({\text{HCO}}_{3}^{ - }\). Aquatic Botany 53: 15–30.

  • Middelboe, A. L. & S. Markager, 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology 37: 553–568.

    Article  Google Scholar 

  • Olesen, B. & T. V. Madsen, 2000. Growth and physiological acclimation to temperature and inorganic carbon availability by two submerged aquatic macrophyte species, Callitriche cophocarpa and Elodea canadensis. Functional Ecology 14: 252–260.

    Article  Google Scholar 

  • Poorter, H. & M. L. Navas, 2003. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist 157: 175–198.

    Article  Google Scholar 

  • Hoffmann, W. A. & H. Poorter, 2002. Avoiding bias in calculations of relative growth rates. Annals of Botany 80: 37–42.

    Article  Google Scholar 

  • Richter, D. & E. M. Gross, 2013. Chara can outcompete Myriophyllum under low phosphorus supply. Aquatic Sciences 75: 457–467.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K., 1983. Photosynthetic carbon sources of stream macrophytes. Journal of Experimental Botany 34: 198–210.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K., 1989. Environmental variables and their effect on photosynthesis of aquatic plant communities. Aquatic Botany 34: 5–25.

    Article  CAS  Google Scholar 

  • Santamaria, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137–154.

    Article  Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Arnold, London.

    Google Scholar 

  • Smart, R. M. & J. W. Barko, 1985. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquatic Botany 21: 251–263.

    Article  Google Scholar 

  • Spencer, W. & G. Bowes, 1990. Ecophysiology of the world’s most troublesome aquatic weeds. In Pieterse, A. H. & K. J. Murphy (eds), Aquatic Weeds—The Ecology and Management of Nuisance Aquatic Vegetation. Oxford University Press, Oxford.

    Google Scholar 

  • Van, T. K., W. T. Haller & G. Bowes, 1976. Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiology 58: 761–768.

  • Winkel, A. & J. Borum, 2009. Use of sediment CO2 by submersed rooted plants. Annals of Botany 103: 1015–1023.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We heartily acknowledge the excellent technical assistance of M. Graf and the helpful comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hussner.

Additional information

Guest editors: Sidinei M. Thomaz, Katya E. Kovalenko, John E. Havel & Lee B. Kats / Aquatic Invasive Species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussner, A., Jahns, P. European native Myriophyllum spicatum showed a higher \({\text{HCO}}_{3}^{ - }\) use capacity than alien invasive Myriophyllum heterophyllum . Hydrobiologia 746, 171–182 (2015). https://doi.org/10.1007/s10750-014-1976-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1976-4

Keywords

Navigation