Skip to main content

Advertisement

Log in

Loss of phytoplankton functional and taxonomic diversity induced by river regulation in a large tropical river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Human activities have disrupted the functioning of river ecosystems around the world. In the Amazon basin, hydropower expansion has affected diversity patterns, but no study has investigated how phytoplankton assemblages respond to impoundments. This study investigated the hypothesis that phytoplankton diversity is highly sensitive to river damming in large tropical rivers, declining in impoundment areas. We examined patterns of taxonomic diversity (i.e., richness, biovolume, and composition), functional diversity (Reynolds Functional Groups, RFGs), and functional redundancy (i.e., number of taxa in each RFG) along the Tocantins River, before and after the construction of Estreito Hydropower Dam. We monitored five sites along the river (ca. 260 km) between December 2009 and May 2013. The dam changed environmental conditions related to flow, nutrient supply, and depth. We recorded 140 taxa and 26 RFGs in the area. Taxa richness, biovolume, and the number of RFGs declined significantly after river regulation. Composition and abundance ranks changed over periods, and the codons C, Y, TC, W1, and LO were eliminated; functional redundancy declined significantly. These results show that phytoplankton diversity is sensitive to river regulation in large tropical rivers, where changes in hydrology and environmental filters lead to significant losses in taxonomic and functional diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agostinho, A. A., L. E. Miranda, L. M. Bini, L. C. Gomes, S. M. Thomaz & H. I. Suzuki, 1999. Patterns of colonization in Neotropical reser; and prognoses on aging. In Tundisi, J. G. & M. Straskraba (eds), Theoretical Reservoir Ecology and its Application. International Institute of Ecology, Oldendorf: 227–265.

    Google Scholar 

  • Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology = Revista brasleira de biologia 68: 1119–1132.

    CAS  PubMed  Google Scholar 

  • Agostinho, A. A., L. C. Gomes, N. C. L. Santos, J. C. G. Ortega & F. M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and management. Fisheries Research 173: 26–36.

    Google Scholar 

  • ANA, 2009. Plano estratégico de recursos hídricos da bacia hidrográfica dos rios Tocantins e Araguaia : relatório síntese. ANA, Brasília.

    Google Scholar 

  • Arantes, C. C., D. B. Fitzgerald, D. J. Hoeinghaus & K. O. Winemiller, 2019. ScienceDirect Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Current Opinion in Environmental Sustainability Elsevier BV 37: 28–40.

    Google Scholar 

  • Araújo, E. S., E. E. Marques, I. S. Freitas, A. L. Neuberger, R. Fernandes & F. M. Pelicice, 2013. Changes in distance decay relationships after river regulation: Similarity among fish assemblages in a large Amazonian river. Ecology of Freshwater Fish 22: 543–552.

    Google Scholar 

  • Barbosa, A. B. & M. A. Chícharo, 2012. Hydrology and Biota Interactions as Driving Forces for Ecosystem Functioning. Treatise on Estuarine and Coastal Science. Elsevier Inc., Waltham. https://doi.org/10.1016/B978-0-12-374711-2.01002-0.

    Book  Google Scholar 

  • Benedito-Cecilio, E., B. R. Forsberg & L. C. Martinelli, 2000. Carbon sources of Amazonian fisheries. Fisheries Management and Ecology 7: 305–315.

    Google Scholar 

  • Beyruth, Z., 2000. Periodic disturbances, trophic gradient and phytoplankton characteristics related to cyanobacterial growth in Guarapiranga Reservoir, São Paulo State, Brazil. Hydrobiologia 424: 51–65.

    CAS  Google Scholar 

  • Brasil, J., & V. L. M. Huszar, 2011. O papel dos traços funcionais na ecologia do fitoplâncton continental. Oecologia Australis 15: 799–834.

    Google Scholar 

  • Brasil - Agência Nacional de Água - ANA, 2014. Manual de Procedimentos da Operação- Módulo 10 - Submódulo 1021. ANA, Brasilia.

    Google Scholar 

  • Brasil - Agência Nacional de Água - ANA, 2018. Boletim diário de monitoramento da bacia do rio Paraíba do Sul. Agência Nacional das Águas., https://www.ana.gov.br/sala-de-situacao/tocantins/colecao-para-boletim-diario-do-tocantins?b_start:int=510.

  • Braun, B. & M. Schagerl, 2010. Algae-environment relationships in an impoundment stretch of the River Grosse Erlauf (Austria). River Systems 19: 3–13.

    Google Scholar 

  • Carmichael, W. W., 1997. The Cyanotoxins Advances in Botanical Research. Academic Press, London.

    Google Scholar 

  • Chapin, F. S., E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavorel, O. E. Sala, S. E. Hobbie, M. C. Mack & S. Díaz, 2000. Consequences of changing biodiversity. Nature 405: 234–242.

    CAS  PubMed  Google Scholar 

  • Chapman, H. D. & P. F. Pratt, 1961. Plant analysis. Methods of analysis for soils, plants and waters. Division of Agricultural Sciences, Davis, CA.

    Google Scholar 

  • Cole, G. A. & P. E. Weihe, 2016. Textbook of Limnology. Waveland Press, Long Grove, IL.

    Google Scholar 

  • Costa-Böddeker, S., H. Bennion, T. A. de Jesus, A. L. S. Albuquerque, R. C. L. Figueira & D. C. de Bicudo, 2012. Paleolimnologically inferred eutrophication of a shallow, tropical, urban reservoir in southeast Brazil. Journal of Paleolimnology 48: 751–766.

    Google Scholar 

  • De Bicudo, C. E. M. & M. Meneze, 2006. Gêneros de algas de águas continentais do Brasil (chave para identificação e descrições). RIMA Editora, São Carlos.

    Google Scholar 

  • de Cunha, E. D. S., A. C. da Cunha, A. M. da Silveira Junior & S. M. M. Faustino, 2013. Phytoplankton of two rivers in the eastern amazon: characterization of biodiversity and new occurrences. Acta Botanica Brasilica 27: 364–377.

    Google Scholar 

  • Domingues, R. B., A. B. Barbosa, U. Sommer & H. M. Galvão, 2012. Phytoplankton composition, growth and production in the Guadiana estuary (SW Iberia): Unraveling changes induced after dam construction. Science of the Total Environment Elsevier B.V. 416: 300–313.

    CAS  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2005. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81: 163–182.

    PubMed  Google Scholar 

  • ênio Dantas, W., M. C. Bittencourt-Oliveira & A. N. do Moura, 2012. Dynamics of phytoplankton associations in three reservoirs in northeastern Brazil assessed using Reynolds’ theory. Limnologica 42: 72–80.

    CAS  Google Scholar 

  • Errera, R. M. & L. Campbell, 2011. Osmotic stress triggers toxin production by the dinoflagellate Karenia brevis. Proceedings of the National Academy of Sciences 109: 17723–17724.

    Google Scholar 

  • Falkowski, P., 2012. The power of plankton. Nature 483: 7–10.

    Google Scholar 

  • Fonseca, C. R. & G. Ganade, 2001. Species functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecology. https://doi.org/10.1046/j.1365-2745.2001.00528.x.

    Article  Google Scholar 

  • Forsberg, B. R., J. M. Melack, T. Dunne, R. B. Barthem, M. Goulding, R. C. D. Paiva, M. V. Sorribas, U. L. Silva & S. Weisser, 2017. The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE 12(8): e0182254.

    PubMed  PubMed Central  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohnstad, 1978. Methods for physical and chemical analysis of freshwater. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Grill, G., B. Lehner, M. Thieme, B. Geenen, D. Tickner, F. Antonelli, S. Babu, P. Borrelli, L. Cheng, H. Crochetiere, H. Ehalt Macedo, R. Filgueiras, M. Goichot, J. Higgins, Z. Hogan, B. Lip, M. E. McClain, J. Meng, M. Mulligan, C. Nilsson, J. D. Olden, J. J. Opperman, P. Petry, C. Reidy Liermann, L. Sáenz, S. Salinas-Rodríguez, P. Schelle, R. J. P. Schmitt, J. Snider, F. Tan, K. Tockner, P. H. Valdujo, A. van Soesbergen & C. Zarfl, 2019. Mapping the world’s free-flowing rivers. Nature Springer, US 569: 215–221.

    CAS  Google Scholar 

  • Hamm, C. E., R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel & V. Smetacek, 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421: 841–843.

    CAS  PubMed  Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9.

    Google Scholar 

  • Henry, R., 1992. The Oxygen deficit in Jurumirim (Paranapanema Reservoir. Japanese Journal of Limnology 53: 379–384.

    Google Scholar 

  • Hooper, D. U., I. F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. B. Naeem, B. Schmid, H. Setala, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of Biodiversity on Ecosystem Functioning: a Consensus of Current. Ecological Monographs 75: 3–35.

    Google Scholar 

  • Jensen, J. P., E. Jeppesen, K. Blrik, & P. Kristensen, 1994. Impact of Nutrients and Physical Factors on the Shift from Cyanobacterial to Chlorophyte Domiance in Shallow Danish Lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 1692–1699.

    Google Scholar 

  • Johnson, K. H., K. A. Vogt, H. J. Clark, O. Schmitz & D. Vogt, 1996. Resilience and stability of ecosystems. Trends in Ecology & Evolution 11: 372–377.

    CAS  Google Scholar 

  • Keddy, P. A., 1992. A pragmatic approach to functional ecology. Functional Ecology 6: 621–626.

    Google Scholar 

  • Kimmel, B. L., O. T. Lind & L. J. Paulson, 1993. Reservoir primary production. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. Wiley, New York: 246.

    Google Scholar 

  • Koroleff, K., 1978. Determination of ammonia. In Grasshoff, K. & E. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie, Winhein.

    Google Scholar 

  • Kruk, C. & A. M. Segura, 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698: 191–202.

    CAS  Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. LüRling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Google Scholar 

  • Kruk, C., M. Devercelli, V. L. M. Huszar, E. Hernández, G. Beamud, M. Diaz, L. H. S. Silva & A. M. Segura, 2017. Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology 62: 1681–1692.

    CAS  Google Scholar 

  • Lima, A. C., C. S. Agostinho, D. Sayanda, F. M. Pelicice, A. M. V. M. Soares & K. A. Monaghan, 2016. The rise and fall of fish diversity in a neotropical river after impoundment. Hydrobiologia 763: 207–221.

    Google Scholar 

  • Lund, J., C. Kipling & E. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Lürling, M., M. M. Mello, F. van Oosterhout, L. S. de Domis & M. M. Marinho, 2018. Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Frontiers in Microbiology 9: 1–14.

    Google Scholar 

  • Mackereth, F. Y. H., J. Heron & J. J. Talling, 1978. Water analysis: some revised methods for limnologist. Freshwater Biology Association, Scientific Publication, Ambleside.

    Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.

    Google Scholar 

  • MMA - Ministério do Meio Ambiente, & Secretaria de Recursos Hídricos., 2006. Caderno da região hidrográfica Tocantins - Araguaia..

  • Moreti, L. O. R., L. Martos, V. M. Bovo-Scomparin & L. C. Rodrigues, 2013. Variação espacial e temporal dos grupos funcionais do fitoplâncton em um reservatório tropical. Acta Scientiarum - Biological Sciences 35: 359–366.

    CAS  Google Scholar 

  • Mouillot, D., N. A. J. Graham, S. Villéger, N. W. H. Mason & D. R. Bellwood, 2013. A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution 28: 167–177.

    PubMed  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia 578: 87–95.

    Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2011. Fight on Plankton! or, Phytoplankton Shape and Size as Adaptive Tools to Get Ahead in the Struggle for Life. Cryptogamie, Algologie 32: 157–204.

    Google Scholar 

  • Naselli-Flores, L., T. Zohary & J. Padisák, 2020. Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds. Hydrobiologia. https://doi.org/10.1007/s10750-020-04217-x.

    Article  Google Scholar 

  • Nogueira, M. G., M. Ferrareze, M. L. Moreira & R. M. Gouvêa, 2010. Phytoplankton assemblages in a reservoir cascade of a large tropical – subtropical river (SE, Brazil). Brazilian Journal of Biology Revista brasleira de biologia 70: 781–793.

    CAS  PubMed  Google Scholar 

  • Okuku, E. O., M. Tole, L. I. Kiteresi & S. Bouillon, 2016. The response of phytoplankton and zooplankton to river damming in three cascading reservoirs of the Tana River, Kenya. Lakes and Reservoirs: Research and Management 21: 114–132.

    Google Scholar 

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.

    Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Google Scholar 

  • Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries 16: 697–715.

    Google Scholar 

  • Perônico, P. B., C. S. Agostinho, R. Fernandes & F. M. Pelicice, 2019. Community reassembly after river regulation: rapid loss of fish diversity and the emergence of a new state. Hydrobiologia 847: 519–533.

    Google Scholar 

  • Pineda, A., P. Iatskiu, S. Jati, A. C. M. Paula, B. F. Zanco, C. C. Bonecker, G. A. Moresco, L. A. Ortega, Y. R. Souza, & L. C. Rodrigues, 2020. Damming reduced the functional richness and caused the shift to a new functional state of the phytoplankton in a subtropical region. Hydrobiologia. https://doi.org/10.1007/s10750-020-04311-0.

    Article  Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, D. Brian, R. E. Sparks, J. C. Stromberg, N. L. Poff, J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. A paradigm for river conservation and restoration. BioScience 47: 769–784.

    Google Scholar 

  • Pringle, C. M., M. C. Freeman & B. J. Freeman, 2000. Regional effects of hydrologic alterations on riverine Macrobiota in the New World: Tropical – Temperate Comparisons. BioScience 50: 807–823.

    Google Scholar 

  • Rahel, F. J. & R. L. Mclaughlin, 2018. Selective fragmentation and the management of fish movement across anthropogenic barriers. Ecological Applications 28: 2066–2081.

    PubMed  Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Journal of the Marine Biological Association of the United Kingdom. 77: 919.

    Google Scholar 

  • Reynolds, C. S., 1999. Modelling phytoplankton dynamics and its application to lake management. Hydrobiologia 396: 123–131.

    Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, New York.

    Google Scholar 

  • Reynolds, C. S., J. P. Descy & J. Padisák, 1994. Are phytoplankton dynamics in rivers so different from those in shallow lakes? Hydrobiologia 289: 1–7.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores, & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research. 24: 417–428, http://plankt.oxfordjournals.org/cgi/content/abstract/24/5/417.

  • Rodrigues, L. C., N. R. Simões, V. M. Bovo-Scomparin, S. Jati, N. F. Santana, M. C. Roberto & S. Train, 2015. Phytoplankton alpha diversity as an indicator of environmental changes in a neotropical floodplain. Ecological Indicators Elsevier Ltd 48: 334–341.

    CAS  Google Scholar 

  • Rodrigues, L. C., B. M. Pivato, L. C. G. Vieira, V. M. Bovo-Scomparin, J. C. Bortolini, A. Pineda & S. Train, 2018. Use of phytoplankton functional groups as a model of spatial and temporal patterns in reservoirs: a case study in a reservoir of central Brazil. Hydrobiologia 805: 147–161.

    Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.

    Google Scholar 

  • Scheffer, M., S. Hosper, M. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shalow lakes. Trends in Ecology and Evolution 8: 275–279.

    CAS  PubMed  Google Scholar 

  • Sioli, H., 1984. The Amazon: limnology and lands cape eco1ogy of a mighty tropica1 river and its basin. Junk Publications, Dordrecht.

    Google Scholar 

  • Soares, M. C. S., V. L. M. Huszar & F. Roland, 2007. Phytoplankton dynamics in two tropical rivers with different degrees of human impact (Southeast Brazil). River Research and Applications 23: 698–714.

    Google Scholar 

  • Souza, D. G., N. C. Bueno, J. C. Bortolini, L. C. Rodrigues, V. M. Bovo-Scomparin & G. M. de Souza Franco, 2016. Phytoplankton functional groups in a subtropical Brazilian reservoir: responses to impoundment. Hydrobiologia 779: 47–57.

    Google Scholar 

  • StatSoft, 2005. STATISTICA (data analysis software system)., www.statsoft.com.

  • Sun, J. U. N. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25(11): 1331–1346.

    Google Scholar 

  • Teixeira de Oliveira, M., O. Rocha & A. Peret, 2011. Structure of the phytoplankton community in the Cachoeira Dourada reservoir (GO/MG), Brazil. Brazilian Journal of Biology 71: 587–600.

    CAS  Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics 13: 349–372.

    Google Scholar 

  • Trinh, D. A., T. N. M. Luu, Q. H. Trinh, H. S. Tran, T. M. Tran, T. P. Q. Le, T. T. Duong, D. Orange, J. L. Janeau, T. Pommier & E. Rochelle-Newall, 2016. Impact of terrestrial runoff on organic matter, trophic state, and phytoplankton in a tropical, upland reservoir. Aquatic Sciences Springer Basel 78: 367–379.

    CAS  Google Scholar 

  • Tundisi, J. G. & T. Matsumura-Tundisi, 2003. Integration of research and management in optimizing multiple uses of reservoirs: the experience in South America and Brazilian case studies. Hydrobiologia 500: 231–242.

    Google Scholar 

  • Turgeon, K., C. Turpin & I. Gregory-Eaves, 2019. Dams have varying impacts on fish communities across latitudes: a quantitative synthesis. Ecology Letters 22(9): 1501–1516.

    PubMed  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.

    Google Scholar 

  • Walker, B., A. Kinzig & J. Langridge, 1999. Adsorption behavior of phenanthrene onto treated natrural sorbents. Ecosystems 2: 95–113.

    Google Scholar 

  • Winemiller, K. O., D. B. Fitzgerald, L. M. Bower & E. R. Pianka, 2015. Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters. https://doi.org/10.1111/ele.12462.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petere. Jr., C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. T. Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. Van Soesbergen & L. Sáenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Programa de Pós-Graduação em Biodiversidade, Ecologia e Conservação (old Ecologia de Ecótonos) for providing infrastructure and support. We also thank Núcleo Estadual de Metereologia e Recursos Hídricos (Universidade Estadual do Tocantins) for field and laboratory work. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPEs) provided a scholarship for I.G.S. and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) provided research grants for F.M.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idelina Gomes da Silva.

Additional information

Handling editor: Luigi Naselli-Flores

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Supplementary material 2 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, I.G., Pelicice, F.M. & Rodrigues, L.C. Loss of phytoplankton functional and taxonomic diversity induced by river regulation in a large tropical river. Hydrobiologia 847, 3471–3485 (2020). https://doi.org/10.1007/s10750-020-04355-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04355-2

Keywords

Navigation