Skip to main content
Log in

Phylogeographic study of the West Australian freshwater mussel, Westralunio carteri, uncovers evolutionarily significant units that raise new conservation concerns

  • FRESHWATER MOLLUSCS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

South-western Australia is isolated from other forested regions of Australia by desert and bounded on southern and western sides by the Southern and Indian Oceans, respectively, with Westralunio carteri (Iredale, 1934) as the sole endemic freshwater mussel. Its conservation status is vulnerable. This species has a history of nomenclatural change and its systematic placement and population genetic history are largely unknown. We sampled 46 individuals from 13 sites across W. carteri’s distribution and sequenced two mitochondrial genes (16S rDNA and cytochrome c oxidase subunit I) and one nuclear gene (28S rDNA). The mitochondrial haplotype networks and COI phylogenies revealed three evolutionarily significant units (ESUs): “W. carteri” I including the west coast populations, “W. carteri” II from the south and south-eastern range, and “W. carteri” III only occurring in the south-western tip of Australia. Four species delimitation methods identified two molecular operational taxonomic units supporting two distinct species (“W. carteri” I and “W. carteri” II + III). Phylogeographic patterns revealed herein confirm the historical separation of Western and Southern paleo-basins, also highlighting the isolation of the south-western extremity of the region. This underlines the need for taxonomic revision and will require a re-evaluation of W. carteri’s conservation status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araujo, R. D., K.-O. Buckley, R. García-Jiménez Nagel & A. Machordom, 2018. Species boundaries, geographic distribution and evolutionary history of the Western Palaearctic freshwater mussels Unio (Bivalvia: Unionidae). Zoological Journal of the Linnean Society 182: 275–299.

    Article  Google Scholar 

  • AWRC, 1976. Review of Australia’s Water Resources 1975. Canberra, Australian Water Resources Council (AWRC), Department of Natural Resources.

    Google Scholar 

  • Baker, A. M., C. Bartlett, S. E. Bunn, K. Goudkamp, F. Sheldon & J. M. Hughes, 2003. Cryptic species and morphological plasticity in long-lived bivalves (Unionoida: Hyriidae) from inland Australia. Molecular Ecology 12: 2707–2717.

    Article  CAS  PubMed  Google Scholar 

  • Balla, S. A. & K. F. Walker, 1991. Shape variation in the Australian freshwater mussel Alathyria jacksoni Iredale (Bivalvia, Hyriidae). Hydrobiologia 220: 89–98.

    Article  Google Scholar 

  • Beard, J. S., 1999. Evolution of the river systems of the south-west drainage division, Western Australia. Journal of the Royal Society of Western Australia 82: 147–164.

    Google Scholar 

  • Benson, J. A., P. G. Close, B. A. Stewart & A. J. Lymbery, 2017. Upstream recolonization by freshwater mussels (Unionoida: Hyriidae) following installation of a fishway. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 512–517.

    Article  Google Scholar 

  • Benson, J. A., P. G. Close, B. A. Stewart & A. J. Lymbery, 2019. Freshwater tributaries provide refuge and recolonization opportunities for mussels following salinity reversal. Science of the Total Environment 683: 231–239.

    Article  CAS  Google Scholar 

  • Berg, D. J., A. D. Christian & S. I. Guttman, 2007. Population genetic structure of three freshwater mussel (Unionidae) species within a small stream system: significant variation at local spatial scales. Freshwater Biology 52: 1427–1439.

    Article  Google Scholar 

  • Bouckaert, R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, et al., 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: e1003537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.

    Article  CAS  PubMed  Google Scholar 

  • de Queiroz, K., 2005. A unified concept of species and its consequences for the future of taxonomy. Proceedings of the California Academy of Sciences 56(Suppl. 1): 196–215.

    Google Scholar 

  • de Queiroz, K., 2008. Species concepts and species delimitation. Systematic Biology 56: 879–886.

    Article  Google Scholar 

  • Dellicour, S. & J. Flot, 2018. The hitchhiker’s guide to single-locus species delimitation. Molecular Ecology Resources 2018: 1–13.

    Google Scholar 

  • Drummond, A. J., S. Y. Ho, M. J. Phillips & A. Rambaut, 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: 699.

    Article  CAS  Google Scholar 

  • Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.

    Article  PubMed  Google Scholar 

  • Ferreira-Rodriguez, N., Y. B. Akiyama, O. V. Aksenova, R. Araujo, C. M. Barnhart, Y. V. Bespalaya, A. E. Bogan, I. N. Bolotov, P. B. Budha, C. Clavijo, S. J. Clearwater, G. Darrifran, V. T. Do, K. Douda, E. Froufe, C. Gumpinger, L. Henrikson, C. L. Humphrey, N. A. Johnson, O. Klishko, M. W. Klunzinger, S. Kovitvadhi, U. Kovitvadhi, J. Lajtner, M. Lopes-Lima, E. A. Moorkens, S. Nagayama, K. Nagel, M. Nakano, J. N. Negishi, P. Ondina, P. Oulasvirta, V. Prié, N. Riccardi, M. Rudzīte, F. Sheldon, R. Sousa, D. L. Strayer, M. Takeuchi, J. Taskinen, A. Teixeira, J. S. Tiemann, M. Urbańska, S. Varandas, M. V. Vinarski, B. J. Wicklow, T. Zając & C. C. Vaughn, 2019. Research priorities for freshwater mussel conservation assessment. Biological Conservation 231: 77–87.

    Article  Google Scholar 

  • Fonseca, M. M., M. Lopes-Lima, M. S. Eackles, T. L. King & E. Froufe, 2016. The female and male mitochondrial genomes of Unio delphinus and the phylogeny of freshwater mussels (Bivalvia: Unionida). Mitochondrial DNA Part B Resources 1: 954–957.

    Article  Google Scholar 

  • Froufe, E., C. Sobral, A. Teiseira, R. Sousa, S. Varandas, D. C. Aldridge & M. Lopes-Lima, 2014. Genetic diversity of the pan-European freshwater mussel Anodonta anatina (Bivalvia: Unionoida) based on CO1: new phylogenetic insights and implications for conservation. Aquatic Conservation Marine and Freshwater Ecosystems 24: 561–574.

    Article  Google Scholar 

  • Froufe, E., V. Prié, J. Faria, M. Ghamizi, D. V. Gonçalves, M. E. Gürlek, I. Karaouzas, Ü. Kebapçi, H. Şereflişan, C. Sobral, R. Sousa, A. Teixeira, S. Varandas, S. Zogaris & M. Lopes-Lima, 2016. Phylogeny, phylogeography, and evolution in the Mediterranean region: news from a freshwater mussel (Potomida, Unionida). Molecular Phylogenetics and Evolution 100: 322–332.

    Article  PubMed  Google Scholar 

  • Galeotti, D. M., M. A. Castalanelli, D. M. Groth, C. McCullough & M. Lund, 2015. Genotypic and morphological variation between Galaxiella nigrostriata (Galaxiidae) populations: implications for conservation. Marine and Freshwater Research 66: 187–194.

    Article  CAS  Google Scholar 

  • Geist, J., 2010. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): a synthesis of conservation genetics and ecology. Hydrobiologia 644: 69–88.

    Article  Google Scholar 

  • Gernhard, T., 2008. The conditioned reconstructed process. Journal of Theoretical Biology 253: 769–778.

    Article  PubMed  Google Scholar 

  • Gouws, G., B. A. Stewart & S. R. Daniels, 2006. Phylogeographic structure of a freshwater crayfish (Decapoda: Parastacidae: Cherax preissii) in south-western Australia. Marine and Freshwater Research 57: 837–848.

    Article  CAS  Google Scholar 

  • Gouws, G., B. A. Stewart & S. R. Daniels, 2010. Phylogeographic structure in the gilgie (Decapoda: Parastacidae: Cherax quinquecarinatus): a south-western Australian freshwater crayfish. Biological Journal of the Linnean Society 101: 385–402.

    Article  Google Scholar 

  • Graf, D. L. & D. Ó. Foighil, 2000a. The evolution of brooding characters among the freshwater pearly mussels (Bivalvia: Unionoidea) of North America. Journal of Molluscan Studies 66: 157–170.

    Article  Google Scholar 

  • Graf, D. L. & D. Ó. Foighil, 2000b. Molecular phylogenetic analysis of 28S rDNA supports a Gondwanan origin for Australasian Hyriidae (Mollusca: Bivalvia: Unionoida). Vie et Milieu 50: 245–254.

    Google Scholar 

  • Graf, D. L. & K. S. Cummings, 2007. Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). Journal of Molluscan Studies 73: 291–314.

    Article  Google Scholar 

  • Graf, D. L., H. Jones, A. J. Geneva, J. M. Pfeiffer III & M. W. Klunzinger, 2015. Molecular phylogenetic analysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia: Unionida) and the paraphyly of Australasian taxa. Molecular Phylogenetics and Evolution 85: 1–9.

    Article  PubMed  Google Scholar 

  • Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

    CAS  Google Scholar 

  • Haag, W. R., 2012. North American Freshwater Mussels: Natural History, Ecology and Conservation. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Hopper, S. D., 1979. Biogeographical aspects of speciation in the southwest Australian flora. Annual Review of Ecology and Systematics 10: 399–422.

    Article  Google Scholar 

  • Hopper, S. D. & P. Gioia, 2004. The southwest floristic region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology Evolution and Systematics 35: 623–650.

    Article  Google Scholar 

  • Iredale, T., 1934. The freshwater mussels of Australia. Australian Zoologist 8: 57–78.

    Google Scholar 

  • Johnson, N. A., C. H. Smith, J. M. Pfeiffer, C. R. Randklev, J. D. Williams & J. D. Austin, 2018. Integrative taxonomy resolves taxonomic uncertainty for freshwater mussels being considered for protection under the US Endangered Species Act. Scientific Reports 8: 15892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Källersjö, M., T. von Proschwitz, S. Lundberg, P. Eldenas & C. Erseus, 2005. Evaluation of ITS rDNA as a complement to mitochondrial gene sequences for phylogenetic studies in freshwater mussels: an example using Unionidae from north-western Europe. Zoolica Scripta 34: 415–424.

    Google Scholar 

  • Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler & L. J. Jermiin, 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kat, P. W., 1984. Parasitism and the Unionacea (Bivalvia). Biological Reviews 59: 189–207.

    Article  Google Scholar 

  • Klunzinger, M. & K. F. Walker, 2014. Westralunio carteri. The IUCN Red List of Threatened Species 2014: e.T23073A58526341.

  • Klunzinger, M. W., S. J. Beatty, D. L. Morgan, G. J. Thomson & A. J. Lymbery, 2012. Glochidia ecology in wild fish populations and laboratory determination of competent host fishes for an endemic freshwater mussel of south-western Australia. Australian Journal of Zoology 60: 26–36.

    Article  Google Scholar 

  • Klunzinger, M. W., S. J. Beatty, D. L. Morgan, A. M. Pinder & A. J. Lymbery, 2015. Range decline and conservation status of Westralunio carteri Iredale, 1934 (Bivalvia: Hyriidae) from south-western Australia. Australian Journal of Zoology 63: 127–135.

    Article  Google Scholar 

  • Kumar, S., G. Stecher, M. Li, C. Knyaz & K. Tamura, 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanfear, R., P. B. Frandsen, A. M. Wright, T. Senfeld & B. Walcott, 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773.

    Google Scholar 

  • Lopes-Lima, M., R. Sousa, A. Teixeira, S. Varandas, N. Riccardi, D. C. Aldridge & E. Froufe, 2016. Newly developed microsatellite markers for the pan-European duck mussel, Anodonta anatina: revisiting the main mitochondrial lineages. Aquatic Conservation Marine and Freshwater Ecosystems 26: 307–318.

    Article  Google Scholar 

  • Lopes-Lima, M., E. Froufe, V. T. Do, M. Ghamizi, K. E. Mock, Ü. Kebapçı, O. Klishko, S. Kovitvadhi, U. Kovitvadhi, O. S. Paulo, J. M. Pfeiffer III, M. Raley, N. Riccardi, H. Şereflişan, R. Sousa, A. Teixeira, S. Varandas, X. Wu, D. T. Zanatta, A. Zieritz & A. E. Bogan, 2017. Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): defining modern subfamilies and tribes. Molecular Phylogenetics and Evolution 106: 174–191.

    Article  PubMed  Google Scholar 

  • Lopes-Lima, M., L. E. Bulakova, A. Y. Kuratayev, K. Mehler, M. Seddon & R. Sousa, 2018. Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia 810: 1–14.

    Article  Google Scholar 

  • Lopes-Lima, M., L. E. Bulakova, A. Y. Kuratayev, A. Gomes-dos-Santos, A. Zieritz, E. Froufe & A. E. Bogan, 2019. Revisiting the North American freshwater mussel genus Quadrula sensu lato (Bivalvia Unionidae): phylogeny, taxonomy and species delineation. Zoologica Scripta 48: 1–24.

    Article  Google Scholar 

  • Machordom, A., R. Araujo, D. Erpenbeck & M. A. Ramos, 2003. Phylogeography and conservation genetics of endangered European Margaritiferidae (Bivalvia: Unionoidea). Biological Journal of the Linnean Society London 78: 235–252.

    Article  Google Scholar 

  • Marshall, B. A., M. C. Fenwick & P. A. Ritchie, 2014. New Zealand recent Hyriidae (Mollusca: Bivalvia: Unionida). Molluscan Research 34: 181–200.

    Article  Google Scholar 

  • McMichael, D. F. & I. D. Hiscock, 1958. A monograph of the freshwater mussels (Mollusca: Pelecypoda) of the Australian region. Australian Journal of Marine and Freshwater Research 9: 372–508.

    Article  Google Scholar 

  • Morgan, D. L., P. J. Unmack, S. J. Beatty, B. C. Ebner, M. G. Allen, J. J. Keleher, J. A. Donaldson & J. Murphy, 2014. An overview of the ‘freshwater fishes’ of Western Australia. Journal of the Royal Society of Western Australia 97: 263–278.

    Google Scholar 

  • Moritz, C., 1994. Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology and Evolution 9: 373–375.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, N. P. & C. M. Austin, 2004. Phylogeography of the widespread Australian freshwater prawn, Macrobrachium australiense (Decapoda, Palaemonidae). Journal of Biogeography 31: 1065–1072.

    Article  Google Scholar 

  • Naimo, T. J., E. D. Damschen, R. G. Rada & E. M. Monroe, 1998. Nonlethal evaluation of the physiological health of unionid mussels: methods for biopsy and glycogen analysis. Journal of the North American Benthological Society 17: 121–128.

    Article  Google Scholar 

  • Nee, S., E. C. Holmes, R. M. May & P. H. Harvey, 1994. Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London B Biological Science. 344: 77–82.

    Article  CAS  Google Scholar 

  • Nguyen, L. T., H. A. Schmidt, A. von Haeseler & B. Q. Minh, 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molcular Biology and Evolution 32: 268–274.

    Article  CAS  Google Scholar 

  • Palumbi, S. R., A. P. Martin, S. Romano, W. O. McMillan, L. Stice & G. Grabowski, 1991. The Simple Fool’s Guide to PCR, Version 2.0. Published and distributed by the authors: Honolulu.

  • Pereira, D., M. C. D. Mansur, L. D. S. Duarte, A. S. de Oliveira, D. M. Pimpão, C. T. Callil, C. Ituarte, C. Parada, S. Peredo, G. Darrigran, F. Scarabino, C. Clavijo, G. Lara, I. C. Miyahira, M. T. R. Rodriguez & C. Lasso, 2014. Bivalve distribution in hydrographic regions in South America: historical overview and conservation. Hydrobiologia 735: 15–44.

    Google Scholar 

  • Playford, T. & K. F. Walker, 2008. Status of the endangered Glenelg River Mussel Hyridella glenelgensis (Unionoida: Hyriidae) in Australia. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 679–691.

    Article  Google Scholar 

  • Prié, V., N. Puillandre & P. Bouchet, 2012. Bad taxonomy can kill: molecular reevaluation of Unio mancus Lamarck, 1819 (Bivalvia: Unionidae) and its accepted subspecies. Knowledge and Management of Aquatic Ecosystems 8: 1–18.

    Google Scholar 

  • Puillandre, N., M. V. Modica, Y. Zhang, L. Sirovich, M.-C. Boisselier, C. Cruaud, M. Holford & S. Samadi, 2012. Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21: 2671–2691.

    Article  CAS  PubMed  Google Scholar 

  • Rix, M. G., D. L. Edwards, M. Byrne, M. S. Harvey, L. Joseph & J. D. Roberts, 2014. Biogeogrpahy and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biological Reviews of the Cambridge Philosophical Society 90: 762–793.

    Article  PubMed  Google Scholar 

  • Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rambaut, A., A. J. Drummond, D. Xie, G. Baele & M. A. Suchard, 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology 67: 901–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnasingham, S. & P. D. N. Hebert, 2013. A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8: e66213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozas, J., A. Ferrer-Mata, J. C. Sánchez-Del Barrio, S. Guirao-Rico, P. Librado, S. E. Ramos-Onsins & A. Sánchez-Gracia, 2017. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution 34: 3299–3302.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbour Press, New York.

    Google Scholar 

  • Sela, I., H. Ashkenazy, K. Katoh & T. Pupko, 2015. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Research 43: W7–W14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon, F., 2017. Variable plasticity in shell morphology of some Australian freshwater mussels (Unionoida, Hyriidae). Transactions of the Royal Society of South Australia 141: 193–208.

    Article  Google Scholar 

  • Sousa, R., A. Teixeira, A. Santos, H. Benaissa, S. Varandas, M. Ghamizi, V. Prié, E. Froufe & M. Lopes-Lima, 2018. Oued Bouhlou: a new hope for the Moroccan pearl mussel. Aquatic Conservation Marine and Freshwater Ecosystems 28: 247–251.

    Article  Google Scholar 

  • Strayer, D. L., 2008. Freshwater Mussel Ecology: A Multifactor Approach to Distribution and Abundance. University of California Press, Berkley.

    Book  Google Scholar 

  • Unmack, P. J., 2001. Biogeography of Australian freshwater fishes. Journal of Biogeography 28: 1053–1089.

    Article  Google Scholar 

  • Unmack, P. J., M. P. Hammer, M. Adams & T. E. Dowling, 2011. A phylogenetic analysis of pygmy perches (Teleostei: Percichthyidae) with an assessment of the major historical influences on aquatic biogeography in southern Australia. Systematic Biology 60: 797–812.

    Article  CAS  PubMed  Google Scholar 

  • Vaughn, C. C., 2018. Ecosystem services provided by freshwater mussels. Hydrobiologia 810: 15–27.

    Article  Google Scholar 

  • Walker, J. M., J. P. Curole, D. E. Wade, E. G. Chapman, A. E. Bogan, G. T. Watters & W. R. Hoeh, 2006. Taxonomic distribution and phylogenetic utility of gender-associated mitochondrial genomes in the Unionoida (Bivalvia). Malacologia 48: 265–282.

    Google Scholar 

  • Walker, J. M., A. E. Bogan, E. A. Bonfiglio, D. C. Campbell, A. D. Christian, J. P. Curole, J. L. Harris, R. J. Wojtecki & W. R. Hoeh, 2007. Primers for amplifying the hypervariable, male-transmitted COII-COI junction region in amblemine freshwater mussels (Bivalvia: Unionoidea: Ambleminae). Molecular Ecology Notes 7: 489–491.

    Article  CAS  Google Scholar 

  • Walker, K. F., H. A. Jones & M. W. Klunzinger, 2014a. Bivalves in a bottleneck: taxonomy, phylogeography and conservation of freshwater mussels (Bivalvia: Unionoida) in Australasia. Hydrobiologia 735: 61–79.

    Article  Google Scholar 

  • Walker, K. F., H. A. Jones & M. Klunzinger, 2014b. Hyridella glenelgensis. The IUCN Red List of Threatened Species 2014: e.T58609631A58628791.

  • Whelan, N. V., A. J. Geneva & D. L. Graf, 2011. Molecular phylogenetic analysis of tropical freshwater mussels (Mollusca: Bivalvia: Unionoida) resolves the position of Coelatura and supports a monophyletic Unionidae. Molecular Phylogenetics and Evolution 61: 504–514.

    Article  PubMed  Google Scholar 

  • Whiting, M. F., 2002. Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta 31: 93–104.

    Article  Google Scholar 

  • Wilson, B. E., 1995. A (not-so) radical solution to the species problem. Biology and Philosophy 10: 339–356.

    Article  Google Scholar 

  • Zhang, J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Genetic analyses were funded by FCT – Portuguese Foundation for Science and Technology COMPETE 2020, Portugal 2020 and the European Union through the ERDF under Project ConBiomics: the missing approach for the Conservation of freshwater Bivalves No NORTE-01-0145-FEDER-030286 and, in part, through a grant from the Holsworth Wildlife Research Endowment. AGS and MLL were also funded by FCT under grants SFRH/BD/137935/2018 and SFRH/BD/115728/2016, respectively. This research was supported by national funds through FCT - Foundation for Science and Technology within the scope of UIDB/04423/2020 and UIDP/04423/2020. Specimen field collection was funded by a Murdoch University PhD Scholarship and a grant from the Holsworth Wildlife Research Endowment. Wildlife collection permits were obtained from the Western Australian Department of Environment and Conservation (SF007049) and the Western Australian Department of Fisheries (1724-2010-06). We thank James Keleher for his assistance during field collection and Corey Whisson and the WA Museum for facilitating specimen collection management. We especially thank the editor and anonymous reviewers for their comments which significantly improved upon earlier versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Klunzinger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Manuel P. M. Lopes-Lima, Nicoletta Riccardi, Maria Urbanska & Ronaldo G. Sousa / Biology and Conservation of Freshwater Molluscs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klunzinger, M.W., Lopes-Lima, M., Gomes-dos-Santos, A. et al. Phylogeographic study of the West Australian freshwater mussel, Westralunio carteri, uncovers evolutionarily significant units that raise new conservation concerns. Hydrobiologia 848, 2951–2964 (2021). https://doi.org/10.1007/s10750-020-04200-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04200-6

Keywords

Navigation