Skip to main content

Advertisement

Log in

Fish assemblages in a Mississippi reservoir mudflat with low structural complexity

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In shallow reservoirs, seasonal water drawdowns expose littoral areas and over time produce barren mudflats. When flooded, mudflats provide homogeneous substrates, turbid water, and eroding shorelines of limited ecological value. We hypothesized that in mudflats structurally complex habitats are occupied by more fish, smaller fish of a larger range in sizes, more species, and fish assemblages that are different from those in simpler habitats. We tested these hypotheses over two consecutive years with fish collections made in sites with varying structural complexity. Results indicated that structural complexity harbors more fish in transects and enclosures. Structural complexity did not influence median length, but length range increased with structural complexity. Average species richness increased with structural complexity. Fish assemblage composition changed as structural complexity increased. The ability of cover to provide survival, growth, and carrying capacity benefits is fundamental to programs aimed at increasing structural complexity. Results suggest observed effects on fish assemblages can lead to such benefits. Considering mudflats are a major component of reservoirs, expand as reservoirs age, and there is a potential to exert meaningful change on fish assemblages of impounded rivers by managing mudflats, we suggest additional attention is needed to develop practical habitat restoration options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahams, C., 2006. Sustainable shorelines: the management and revegetation of drawdown zones. Journal of Practical Ecology and Conservation 6: 37–51.

    Google Scholar 

  • Almany, G. R., 2004. Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos 106: 275–284.

    Article  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Bao, Y., P. Gao & X. He, 2015. The water-level fluctuation zone of three Gorges reservoir—a unique geomorphological unit. Earth-Science Reviews 150: 14–24.

    Article  Google Scholar 

  • Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), 1991. Habitat Structure: The Physical Arrangement of Objects in Space. Chapman and Hall, London.

    Google Scholar 

  • Bettoli, P. W. & M. J. Maceina, 1996. Sampling with toxicants. In Murphy, B. R. & D. W. Willis (eds), Fisheries Techniques, 2nd ed. American Fisheries Society, Bethesda: 303–333.

    Google Scholar 

  • Beukers, J. S. & G. P. Jones, 1998. Habitat complexity modifies the impact of piscivores on a coral reef fish population. Oecologia 114: 50–59.

    Article  PubMed  Google Scholar 

  • Bohnsack, J. A., 1991. Habitat Structure and the Design of Artificial Reefs. In Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman and Hall, London: 412–426.

    Chapter  Google Scholar 

  • Bowen, K. L., N. K. Kaushik & A. M. Gordon, 1998. Macroinvertebrate communities and biofilm chlorophyll on woody debris in two Canadian oligotrophic lakes. Archive fur Hydrobiologia 141: 257–281.

    Article  Google Scholar 

  • Brickhill, M. J., S. Y. Lee & R. M. Connolly, 2005. Fishes associated with artificial reefs: attributing changes to attraction or production using novel approaches. Journal of Fish Biology 67(Supplement B): 53–71.

    Article  Google Scholar 

  • Carmignani, J. R. & A. H. Roy, 2017. Ecological impacts of winter water level drawdowns on lake littoral zones: a review. Aquatic Sciences 79: 803–824.

    Article  Google Scholar 

  • Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems—workshop conclusions. Hydrobiologia 506–509: 23–27.

    Article  Google Scholar 

  • Davies-Colley, R. J. & D. G. Smith, 2001. Turbidity, suspended sediment, and water clarity: a review. Journal of American Water Resources Association 37: 1085–1101.

    Article  Google Scholar 

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Eklöv, P., 1997. Effects of habitat complexity and prey abundance on the spatial and temporal distributions of perch (Perca fluviatilis) and pike (Esox lucius). Canadian Journal of Fisheries and Aquatic Sciences 54: 1520–1531.

    Article  Google Scholar 

  • Fischer, J., D. B. Lindenmayer & A. D. Manning, 2006. Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Frontiers in Ecology and the Environment 4: 80–86.

    Article  Google Scholar 

  • Fowler, D. K. & D. A. Hammer, 1976. Techniques for establishing vegetation on reservoir inundation zones. Journal of Soil and Water Conservation 31: 116–118.

    Google Scholar 

  • Furey, P. C., R. N. Mordin & A. Mazumder, 2004. Water level drawdown affects physical and biogeochemical properties of littoral sediments of a reservoir and a natural lake. Lake and Reservoir Management 20: 280–295.

    Article  CAS  Google Scholar 

  • Gerwing, T. G., D. Drolet, D. J. Hamilton & M. A. Barbeau, 2016. Relative importance of biotic and abiotic forces on the composition and dynamics of a soft-sediment intertidal community. PLoS ONE. https://doi.org/10.1371/journal.pone.0147098.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gladfelter, W. B., J. C. Ogden & E. H. Gladfelter, 1980. Similarity and diversity among coral reef fish communities: a comparison between tropical western Atlantic (Virgin Islands) and tropical central Pacific (Marshal1 Islands) patch reefs. Ecology 61: 1156–1168.

    Article  Google Scholar 

  • Gois, K. S., R. R. Antonio, L. C. Gomes, F. M. Pelicice & A. A. Agostinho, 2008. The role of submerged trees in structuring fish assemblages in reservoirs: two case studies in South America. Hydrobiologia 685: 109–119.

    Article  Google Scholar 

  • Gotelli, N. J. & R. K. Colwell, 2011. Estimating Species Richness. In Magurran, A. E. & B. J. McGill (eds), Frontiers in Measuring Biodiversity. Oxford University Press, New York: 39–54.

    Google Scholar 

  • Grenouillet, G., D. Pont & K. L. Seip, 2002. Abundance and species richness as a function of food resources and vegetation structure: juvenile fish assemblages in rivers. Ecography 25: 641–650.

    Article  Google Scholar 

  • Hellsten, S., J. Riihimäki, E. Alasaarela & R. Keränen, 1996. Experimental revegetation of the regulated lake Ontojärvi in northern Finland. Hydrobiologia 340: 339–343.

    Article  Google Scholar 

  • Hixon, M. A. & B. A. Menge, 1991. Species diversity: prey refuges modify the interactive effects of predation and competition. Theoretical Population Biology 39: 178–200.

    Article  Google Scholar 

  • Hoff, M. H, 1991. Effects of increased nesting cover on nesting and reproduction of smallmouth bass in northern Wisconsin lakes. In: D. C. Jackson, editor. Proceedings of the First International Smallmouth Bass Symposium. Mississippi State University, Starkville: 39–43.

  • Hunt, J. & C. A. Annett, 2002. Effects of habitat manipulation on reproductive success of individual largemouth bass in an Ozark reservoir. North American Journal of Fisheries Management 22: 1201–1208.

    Article  Google Scholar 

  • Kaufmann, P. R., D. V. Peck, S. G. Paulsen, C. W. Seeliger, R. M. Hughes, T. R. Whittier & N. C. Kamman, 2014. Lakeshore and littoral physical habitat structure in a national lakes assessment. Lake and Reservoir Management 30: 192–215.

    Article  CAS  Google Scholar 

  • Kennedy, R. H., 1999. Reservoir Design and Operation: Limnological Implications and Management Opportunities. In Tundisi, J. G. & M. Straskrabova (eds), Theoretical Reservoir Ecology and Its Applications. Backhuys Publishers, Leiden: 1–29.

    Google Scholar 

  • Kostylev, V. E., J. Erlandsson, M. Y. Ming & G. A. Williams, 2005. The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecological Complexity 2: 272–286.

    Article  Google Scholar 

  • Kovalenko, K. E., S. M. Thomaz & D. M. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.

    Article  Google Scholar 

  • Li, B., X. Yuan, H. Xiao & Z. Chen, 2011. Design of the dike-pond system in the littoral zone of a tributary in the three Gorges reservoir, China. Ecological Engineering 37: 1718–1725.

    Article  Google Scholar 

  • Li, B., C. Du, X. Yuan, J. H. Martin Willison & H. Xiao, 2016. Suitability of Taxodium distichum for afforesting the littoral zone of the Three Gorges Reservoir. PLoS ONE 11(1): e0146664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingo, M. E. & S. T. Szedlmayer, 2006. The influence of habitat complexity on reef fish communities in the northeastern Gulf of Mexico. Environmental Biology of Fishes 76: 71–80.

    Article  Google Scholar 

  • Mellin, C., C. Huchery, M. J. Caley, M. G. Meekan & C. J. A. Bradshaw, 2010. Reef size and isolation determine the temporal stability of coral reef fish populations. Ecology 91: 3138–3145.

    Article  PubMed  Google Scholar 

  • Miranda, L. E., 2017. Reservoir Fish Habitat Management. Lightning Press, Totowa: 306.

    Google Scholar 

  • Miranda, L. E. & J. Boxrucker, 2009. Warmwater Fish in Large Standing Waters. In Bonar, S. A., W. A. Hubert & D. W. Willis (eds), Standard Methods for Sampling North American Freshwater Fishes. American Fisheries Society, Bethesda: 29–42.

    Google Scholar 

  • Miranda, L. E. & D. J. Dembkowski, 2016. Evidence for serial discontinuity in the fish community of a heavily impounded river. River Research and Applications 32: 1187–1195.

    Article  Google Scholar 

  • Miranda, L. E. & W. D. Hubbard, 1994. Winter survival of age-0 largemouth bass relative to size, predators, and shelter. North American Journal of Fisheries Management 14: 790–796.

    Article  Google Scholar 

  • Miranda, L. E., S. L. Wigen & J. D. Dagel, 2014. Reservoir floodplains support distinct fish assemblages. River Research Applications 30: 338–346.

    Article  Google Scholar 

  • Moore, E. C. & K. A. Hovel, 2010. Relative influence of habitat complexity and proximity to patch edges on seagrass epifaunal communities. Oikos 119: 1299–1311.

    Article  Google Scholar 

  • New, T. & Z. Xie, 2008. Impacts of large dams on riparian vegetation: applying global experience to the case of China’s Three Gorges Dam. Biodiversity and Conservation 17: 3149–3163.

    Article  Google Scholar 

  • Petr, T, 2000. Interactions Between Fish and Aquatic Macrophytes in Inland Waters. A Review. FAO Fisheries Technical Paper 396. Rome.

  • Pickering, H. & D. Whitmash, 1997. Artificial reefs and fisheries exploitation: a review of the ‘attraction versus production’ debate, the influence of design and its significance for policy. Fisheries Research 31: 39–59.

    Article  Google Scholar 

  • R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Rountree, R. A., 1989. Association of fishes with fish aggregation devices: effect of structure size on fish abundance. Bulletin of Marine Science 44: 960–972.

    Google Scholar 

  • Santos, L. N., F. G. Araújo & D. S. Brotto, 2008. Artificial structures as tools for fish habitat rehabilitation in a Neotropical reservoir. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 896–908.

    Article  Google Scholar 

  • Savino, J. F. & R. A. Stein, 1989. Behavior of fish predators and their prey: habitat choice between open water and dense vegetation. Environmental Biology of Fishes 24: 287–293.

    Article  Google Scholar 

  • Smokorowski, K. E. & T. C. Pratt, 2007. Effect of a change in physical structure and cover on fish and fish habitat in freshwater ecosystems—a review and meta-analysis. Environmental Review 15: 15–41.

    Article  Google Scholar 

  • Smokorowski, K. E., T. C. Pratt, W. G. Cole, L. J. McEachern & E. C. Mallory, 2006. Effects on periphyton and macroinvertebrates from removal of submerged wood in three Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences 63: 2038–2049.

    Article  Google Scholar 

  • Tokeshi, M. & S. Arakaki, 2012. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685: 27–47.

    Article  Google Scholar 

  • U. K. Brig (U. K. Biodiversity Reporting and Information Group), 2008. Intertidal Mudflats. In Maddock, A. & N. Chapman (eds), UK Biodiversity Action Plan Priority Habitat Descriptions. UK Biodiversity Reporting and Information Group, Peterborough: 31–32.

    Google Scholar 

  • USFWS (U. S. Fish and Wildlife Service), 1988. A Study of Cutoff Bendways on the Tennessee-Tombigbee Waterway, 1987 Annual Report. U. S. Fish and Wildlife Service, Daphne.

    Google Scholar 

  • Van Dam, A. A., M. E. Azim, M. C. M. Beveridge & M. C. J. Verdregen, 2002. The potential of fish production based on periphyton. Reviews in Fish Biology and Fisheries 12: 1–31.

    Article  Google Scholar 

  • Vogele, L. E. & W. C. Rainwater, 1975. Use of brush shelters as cover by spawning black bass (Micropterus) in bull shoals reservoir. Transactions of the American Fisheries Society 104: 264–269.

    Article  Google Scholar 

  • Warfe, D. M. & L. A. Barmuta, 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171–178.

    Article  Google Scholar 

  • Whitlatch, R. B., 1982. The Ecology of New England Tidal Flats: A Community Profile. US Fish and Wildlife Service Biological Services Program, Washington, DC: 25.

    Google Scholar 

  • Willis, S. C., K. O. Winemiller & H. Lopez-Fernandez, 2005. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142: 284–295.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, J. H., 1973. Distribution patterns of mudflat vegetation in Iowa flood control reservoirs. PhD Dissertation. Iowa State University, Ames.

  • Yanovski, R., P. A. Nelson & A. Abelson, 2017. Structural complexity in coral reefs: examination of a novel evaluation tool on different spatial scales. Frontiers in Ecology and Evolution 5: 27.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Mississippi Department of Wildlife, Fisheries and Parks and Reservoir Fisheries Habitat Partnership. We thank C. Gilliland, M. McNerney, B. Richardson, W. Tucker, and A. Shamaskin for assistance with field work; and J. Boxrucker, R. Ott, and D. Schumann for helpful reviews. This study was performed under the auspices of Mississippi State University’s IACUC protocol # 17-368. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunter R. Hatcher.

Additional information

Handling editor: Eric Larson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatcher, H.R., Miranda, L.E., Colvin, M.E. et al. Fish assemblages in a Mississippi reservoir mudflat with low structural complexity. Hydrobiologia 841, 163–175 (2019). https://doi.org/10.1007/s10750-019-04019-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04019-w

Keywords

Navigation