Skip to main content
Log in

Population genetic structure of the whorl-leaf watermilfoil Myriophyllum verticillatum shaped by topography and geographic distance

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Interpopulation gene flow plays an important role in determining population genetic structure. In this study, we sampled 24 populations of the whorl-leaf watermilfoil Myriophyllum verticillatum from three disjunct regions in China (Northwest China, Northeast China, and the Qinghai-Tibet Plateau (QTP) plus Southwest China) with different topographies and examined its population genetic structure using 17 microsatellite loci. Deserts, plains, and mountains are the main geomorphological features of Northwest China, Northeast China, and the QTP plus Southwest China, respectively. High genetic differentiation and genetic isolation by geographic distance were observed at the overall scale and in all three regions. When compared among the three regions, the lowest level of genetic differentiation and weakest correlation between genetic and geographic distances were presented in Northeast China. Two genetic clusters corresponding to Northwest China and the other two regions were identified, suggesting unequal gene flow among the three disjunct regions. Our findings emphasize the role of topography and geographic distance in shaping population genetic structure in aquatic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The SSR data are deposited in LabArchives (http://www.labarchives.comhttp://www.labarchives.com) and are available via the https://doi.org/10.25833/a4n3-nd37.

References

  • Barrett, S. C. H., C. G. Eckert & B. C. Husband, 1993. Evolutionary processes in aquatic plant populations. Aquatic Botany 44: 105–145.

    Article  Google Scholar 

  • Brochet, A. L., M. Guillemain, H. Fritz, M. Gauthier-Clerc & A. J. Green, 2010. Plant dispersal by teal (Anas crecca) in the Camargue: duck guts are more important than their feet. Freshwater Biology 55: 1262–1273.

    Article  Google Scholar 

  • Chen, J., F. Liu, R. W. Gituru & Q. Wang, 2008. Chloroplast DNA phylogeography of the Chinese endemic alpine quillwort Isoetes hypsophila Hand.-Mazz. (Isoetaceae). International Journal of Plant Science 169: 792–798.

    Article  Google Scholar 

  • Chen, J., Z. Du, S. Sun, R. W. Gituru & Q. Wang, 2013. Chloroplast DNA phylogeography reveals repeated range expansion in a widespread aquatic herb Hippuris vulgaris in the Qinghai-Tibetan Plateau and adjacent areas. PLoS ONE 8: e60948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Z. Du, Y. Yuan & Q. Wang, 2014. Phylogeography of an alpine aquatic herb Ranunculus bungei (Ranunculaceae) on the Qinghai-Tibet Plateau. Journal of Systematics and Evolution 52: 313–325.

    Article  Google Scholar 

  • Clark, L. V. & M. Jasieniuk, 2011. POLYSAT: an R package for polyploid microsatellite analysis. Molecular Ecology Resources 11: 562–566.

    Article  PubMed  Google Scholar 

  • De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The monopolisation hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23: 121–135.

    Article  Google Scholar 

  • Douhovnikoff, V. & R. S. Dodd, 2003. Intra-clonal variation and a similarity threshold for identification of clones: application to Salix exigua using AFLP molecular markers. Theoretical and Applied Genetics 106: 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  • Durka, W., 1999. Genetic diversity in peripheral and subcentral populations of Corrigiola litoralis L. (Illecebraceae). Heredity 83: 476–484.

    Article  CAS  PubMed  Google Scholar 

  • Epperson, B. K. & T. Li, 1996. Measurement of genetic structure within populations using Moran’s spatial autocorrelation statistics. Proceedings of the National Academy of Sciences United States of America 93: 10528–10532.

    Article  CAS  Google Scholar 

  • Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14: 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Falush, D., M. Stephens & J. K. Pritchard, 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7: 574–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.

    Article  Google Scholar 

  • Jenkins, D. G., M. Carey, J. Czerniewska, J. Fletcher, T. Hether, A. Jones, S. Knight, J. Knox, T. Long, M. Mannino, M. McGuire, A. Riffle, S. Segelsky, L. Shappell, A. Sterner, T. Strickler & R. Turs, 2010. A meta-analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography 33: 315–320.

    Google Scholar 

  • King, R. A., R. J. Gornall, C. D. Preston & J. M. Croft, 2002. Population differentiation of Potamogeton pectinatus in the Baltic Sea with reference to waterfowl dispersal. Molecular Ecology 11: 1947–1956.

    Article  CAS  PubMed  Google Scholar 

  • Lönn, M. & H. C. Prentice, 2002. Gene diversity and demographic turnover in central and peripheral populations of the perennial herb Gypsophila fastigiata. Oikos 99: 489–498.

    Article  Google Scholar 

  • Lacoul, P., 2004. Aquatic macrophyte distribution in response to physical and chemical environment of the lakes along an altitudinal gradient in the Himalayas, Nepal. PhD Thesis, Dalhousie University, Halifax.

  • Li, G. D., C. Kim, H. G. Zha, Z. Zhou, Z. L. Nie & H. Sun, 2014. Molecular phylogeny and biogeography of the arctic-alpine genus Lagotis (Plantaginaceae). Taxon 63: 103–115.

    Article  Google Scholar 

  • Lu, H., X. Wang & L. Li, 2010. Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. Geological Society, London, Special Publications 342: 29–44.

    Article  Google Scholar 

  • Lu, Q., J. Zhu, D. Yu & X. Xu, 2016. Genetic and geographical structure of boreal plants in their southern range: phylogeography of Hippuris vulgaris in China. BMC Evolutional Biology 16: 34.

    Article  CAS  Google Scholar 

  • Lynch, M., 1990. The similarity index and DNA fingerprinting. Molecular Biology and Evolution 7: 478–484.

    CAS  PubMed  Google Scholar 

  • MacKinnon, J. R., M. Sha, C. Cheung, G. Carey, X. Zhu & D. Melville, 1996. A Biodiversity Review of China. WWF International, Hong Kong.

    Google Scholar 

  • Maguire, T., R. Peakall & P. Saenger, 2002. Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theoretical and Applied Genetics 104: 388–398.

    Article  CAS  PubMed  Google Scholar 

  • Meirmans, P. G. & P. H. Van Tienderen, 2004. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4: 792–794.

    Article  Google Scholar 

  • Moody, M. L. & D. H. Les, 2010. Systematics of the aquatic angiosperm genus Myriophyllum (Haloragaceae). Systematic Botany 35: 121–139.

    Article  Google Scholar 

  • Na, H. R., C. Kim & H. Choi, 2010. Genetic relationship and genetic diversity among Typha taxa from East Asia based on AFLP markers. Aquatic Botany 92: 207–213.

    Article  CAS  Google Scholar 

  • Nguyen, V. X., M. Detcharoen, P. Tuntiprapas, U. Soe-Htun, J. B. Sidik, M. Z. Harah, A. Prathep & J. Papenbrock, 2014. Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean. BMC Evolutionary Biology 14: 92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nies, G. & T. B. H. Reusch, 2005. Evolutionary divergence and possible incipient speciation in post-glacial populations of a cosmopolitan aquatic plant. Journal of Evolutional Biology 18: 19–26.

    Article  CAS  Google Scholar 

  • Ohba, H., 1988. The alpine flora of the Nepal Himalayas: an introductory note. University of Tokyo Press, Tokyo.

    Google Scholar 

  • Olney, P. J. S., 1963. The food and feeding habits of teal Anas crecca. Proceedings of the Zoological Society of London 140: 169–210.

    Article  Google Scholar 

  • Orsenigo, S., R. Gentili, A. J. P. Smolders, A. Efremov, G. Rossi, N. M. G. Ardenghi, S. Citterio & T. Abeli, 2017. Reintroduction of a dioecious aquatic macrophyte (Stratiotes aloides L.) regionally extinct in the wild. Interesting answers from genetics. Aquatic Conservation: Marine and Freshwater Ecosystems 27: 10–23.

    Article  Google Scholar 

  • Orsini, L., J. Vanoverbeke, I. Swillen, J. Mergeay & L. De Meester, 2013. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology 22: 5983–5999.

    Article  PubMed  Google Scholar 

  • Peakall, R. & P. E. Smouse, 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg, M. S. & C. D. Anderson, 2011. PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods in Ecology and Evolution 2: 229–232.

    Article  Google Scholar 

  • Samadi, S., J. Mavárez, J. P. Pointier, B. Delay & P. Jarne, 1999. Microsatellite and morphological analysis of population structure in the parthenogenetic freshwater snail Melanoides tuberculata: insights into the creation of clonal variability. Molecular Ecology 8: 1141–1153.

    Article  Google Scholar 

  • Santamaría, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137–154.

    Article  Google Scholar 

  • Scribailo, R. W. & M. S. Alix, 2014. Haloragaceae. In: Flora of North America, Provisional Publication, May 28, 2014. http://floranorthamerica.org/files/Haloragaceae.provisional.Gal_.pdf.

  • Shea, K. L. & G. R. Furnier, 2002. Genetic variation and population structure in central and isolated populations of balsam fir, Abies balsamea (Pinaceae). American Journal of Botany 89: 783–791.

    Article  PubMed  Google Scholar 

  • Sibley, C. G. & B. L. Monroe, 1990. Distribution and Taxonomy of Birds of the World. Yale University Press, New Haven.

    Google Scholar 

  • Slatkin, M., 1985. Gene flow in natural populations. Annual Review of Ecology and Systematics 16: 393–430.

    Article  Google Scholar 

  • Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.

    Article  CAS  PubMed  Google Scholar 

  • Suren, A. M. & S. J. Ormerod, 1998. Aquatic bryophytes in Himalayan streams: testing a distribution model in a highly heterogeneous environment. Freshwater Biology 40: 697–716.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsyusko, O. V., M. H. Smith, R. R. Sharitz & T. C. Glenn, 2005. Genetic and clonal diversity of two cattail species, Typha latifolia and T. angustifolia (Typhaceae), from Ukraine. American Journal Botany 92: 1161–1169.

    Article  Google Scholar 

  • Wang, Q., J. Liu, G. A. Allen, Y. Ma, W. Yue & K. L. Marr, 2016. Arctic plant origins and early formation of circumarctic distributions: a case study of the mountain sorrel, Oxyria digyna. New Phytologist 209: 343–353.

    Article  PubMed  Google Scholar 

  • Wang, W. T., 1992. On some distribution patterns and some migration routes found in the eastern Asiatic region. Acta Phytotaxonomica Sinica 30: 1–24.

    CAS  Google Scholar 

  • Wang, Y., J. Chen, C. Xu, X. Liu, Q. Wang & T. J. Motley, 2010. Population genetic structure of an aquatic herb Batrachium bungei (Ranuculaceae) in the Hengduan Mountains of China. Aquatic Botany 92: 221–225.

    Article  CAS  Google Scholar 

  • Waycott, M. & P. A. G. Barnes, 2001. AFLP diversity within and between populations of the Caribbean seagrass Thalassia testudinum (Hydrocharitaceae). Marine Biology 139: 1021–1028.

    Article  CAS  Google Scholar 

  • Weber, J. A. & L. D. Noodén, 1976. Environmental and hormonal control of turion formation in Myriophyllum verticillatum. Plant and Cell Physiology 17: 721–731.

    Article  CAS  Google Scholar 

  • Weber, J. A. & L. D. Noodén, 2005. The causes of sinking and floating in turions of Myriophyllum verticillatum. Aquatic Botany 83: 219–226.

    Article  Google Scholar 

  • Wen, J., J. Q. Zhang, Z. L. Nie, Y. Zhong & H. Sun, 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Frontiers in Genetics 5: 1–16.

    CAS  Google Scholar 

  • Wu, Z., D. Yu & X. Xu, 2013. Development of microsatellite markers in the hexaploid aquatic macrophyte, Myriophyllum spicatum (Haloragaceae). Applications in Plant Sciences 1: 1200230.

    Article  Google Scholar 

  • Wu, Z., D. Yu, Z. Wang, X. Li & X. Xu, 2015. Great influence of geographic isolation on the genetic differentiation of Myriophyllum spicatum under a steep environmental gradient. Scientific Reports 5: 15618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Z., D. Yu, X. Li & X. Xu, 2016. Influence of geography and environment on patterns of genetic differentiation in a widespread submerged macrophyte, Eurasian watermilfoil (Myriophyllum spicatum L., Haloragaceae). Ecology and Evolution 6: 460–468.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, F. S., Y. F. Li, X. Ding & X. Q. Wang, 2008. Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change. Molecular Ecology 17: 5135–5145.

    Article  PubMed  Google Scholar 

  • Young, A., T. Boyle & T. Brown, 1996. The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution 11: 413–418.

    Article  CAS  Google Scholar 

  • Yu, D., D. Wang, Z. Li & A. M. Funston, 2002. Taxonomic revision of the genus Myriophyllum (Haloragaceae) in China. Rhodora 104: 396–421.

    Google Scholar 

  • Zhao, J. & C. Chen, 1999. Chinese Geography. Higher Education Press, Beijing.

    Google Scholar 

  • Zhou, Z. Q. & T. Liu, 2005. The current status, threats and protection way of Sanjiang Plain wetland, Northeast China. Journal of Forest Research 16: 148–152.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China to Xinwei Xu (31270265) and Zhigang Wu (31700190). We thank the members of Dan Yu’s group for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Xu.

Additional information

Handling editor: André Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Characteristics of five new microsatellite markers developed in Myriophyllum verticillatum. Supplementary material 1 (DOCX 15 kb)

Online Resource 2

Modeling of the optimal number of genetic clusters in Myriophyllum verticillatum using STRUCTURE in an overall scale (a), and in regions of Northeast China and the QTP plus Southwest China (b), respectively. ΔK calculated based on Evanno et al. (2005), charted against the number of modeled gene pools (K). Supplementary material 2 (DOCX 35 kb)

Online Resource 3

The bar plot depicts the STRUCTURE admixture coefficients of all individuals of 24 populations when K = 2 (a), the individuals of 16 populations from Northeast China and the QTP plus Southwest China when K = 2 (b). A single vertical bar displays the membership coefficient of each individual, with sample site labeled. Supplementary material 3 (DOCX 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Wu, Z., Wang, H. et al. Population genetic structure of the whorl-leaf watermilfoil Myriophyllum verticillatum shaped by topography and geographic distance. Hydrobiologia 838, 55–64 (2019). https://doi.org/10.1007/s10750-019-03977-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-03977-5

Keywords

Navigation