Skip to main content
Log in

Biological effects of water velocity and other hydrodynamic characteristics of flow on dreissenid mussels

  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The invasion of dreissenid mussels into inland waters of the Northern Hemisphere has received considerable attention and, both zebra mussels and quagga mussels continue to spread westward. Despite studies aimed at understanding the biology of dreissenid mussels, relatively few studies have focused on water velocity and other hydrodynamic characteristics of water flow. The objective of this review was to identify, through a search of online databases, the papers that have been made available that directly have assessed the influence of hydrodynamic characteristics of water flow on dreissenid mussel biology. Using Thompson Reuters Web of Science, Google Scholar, and other resources, 46 papers were identified. These papers detailed that metrics associated with hydrodynamics of water flow, including current, wave action, velocity, flow rate, and discharge, can influence the biology of dreissenid mussels (primarily zebra mussel, which were studied far more than quagga mussel). Hydrodynamic characteristics influenced external fertilization, larval development and settlement, juvenile recruitment and attachment, and suspension feeding, growth and abundance of adults. In most cases, the impact of higher flow rates were locally negative and may present an opportunity for applications of water flow to control the spread or establishment of dreissenid mussels. Several knowledge gaps have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ackerman, J. D., 1999. Effect of velocity on the filter feeding of dreissenid mussels (Dreissena polymorpha and Dreissena bugensis): implications for trophic dynamics. Canadian Journal of Fisheries and Aqutic Sciences 56: 1551–1561.

    Article  Google Scholar 

  • Ackerman, J. D., 2014. Role of fluid dynamics in dresissenid mussel biology. In Nalepa, T. F. & D. W. Schloesser (eds), Quagga and Zebra Mussels: Biology, Impacts, and Control, 2nd ed. CRC Press, Boca Raton FL: 471–483.

    Google Scholar 

  • Ackerman J. D., & B. Sim, 1994. Fluid dynamic influences on the recruitment of zebra mussels. Poster Presentation. 4th International Zebra Mussel Conference, Madison, WI.

  • Ackerman, J. D., B. Sim, S. J. Nichols & R. Claudi, 1994. A review of the early life history of the zebra mussel (Dreissena polymorpha): comparisons with marine bivalves. Canadian Journal of Zoology 72: 1169–1179.

    Article  Google Scholar 

  • Ackerman, J. D., C. R. Ethier, J. K. Spelt, D. G. Allen & C. M. Cottrell, 1995. A wall jet to measure the attachment strength of zebra mussels. Canadian Journal of Fisheries and Aqutic Sciences 52: 126–135.

    Article  Google Scholar 

  • Ackerman, J. D., C. M. Cottrell, C. R. Ethier, D. G. Allen & J. K. Spelt, 1996. Attachment strength of zebra mussels on nautral, polymeric and metallic materials. Journal of Environmental Engineering 122: 141–148.

    Article  CAS  Google Scholar 

  • Alix, M., R. J. Knight & S. J. Ormerod, 2016. Rapid colonisation of a newly formed lake by zebra mussels and factors affecting juvenile settlement. Management of Biological Invasions 7: 405–418.

    Article  Google Scholar 

  • Allen, D. C. & C. C. Vaughn, 2010. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. Journal of the North American Benthological Society 29: 383–394.

    Article  Google Scholar 

  • Allen, Y. C. & C. W. Ramcharan, 2001. Dreissena distribution in commercial waterways of the US: using failed invasions to identify limiting factors. Canadian Journal of Fisheries and Aqutic Sciences 58: 898–907.

    Article  Google Scholar 

  • Berkman, P. A., D. W. Garton, M. A. Haluch, G. W. Kennedy & L. R. Febo, 2000. Habitat shift in invasive species: zebra and quagga mussel population characteristics on shallow soft substrates. Biological Invasions 22: 1–6.

    Article  Google Scholar 

  • Berkman, P. A., M. A. Haltuch, E. Tichich, D. W. Garton, G. W. Kennedy, J. E. Gannon, S. D. Mackey, J. A. Fuller & D. L. Liebenthal, 1998. Zebra mussels invade Lake Erie muds. Nature 393: 27–28.

    Article  CAS  Google Scholar 

  • Bially, A. & H. J. MacIsaac, 2000. Fouling mussels (Dreissena spp.) colonize soft sediments in Lake Erie and facilitate benthic invertebrates. Freshwater Biology 43: 85–97.

    Article  Google Scholar 

  • Boegman, L., M. R. Loewen, P. F. Hamblin & D. A. Culver, 2008. Vertical mixing and weak stratification over zebra mussel colonies in western Lake Erie. Limnology and Oceanography 53: 1093–1110.

    Article  Google Scholar 

  • Chase, M. E. & R. C. Bailey, 1999. The ecology of the zebra mussel (Dreissena polymorpha) in the lower Great Lakes of North America: I. Population dynamics and growth. Journal of Great Lakes Research 25: 107–121.

    Article  Google Scholar 

  • Chen, D., S. L. Gerstenberger, S. A. Mueting & W. H. Wong, 2011. Environmental factors affecting settlement of quagga mussel (Dreissena rostriformis bugensis) veligers in Lake Mead, Nevada-Arizona, USA. Aquatic Invasions 6: 149–156. https://doi.org/10.3391/ai.2011.6.2.04

    Article  Google Scholar 

  • Churchill, C. J. & D. P. Quigley, 2018. Downstream dispersal of zebra mussels (Dreissena polymorpha) under different flow conditions in a coupled lake-stream ecosystem. Biological Invasions 20(5): 1113–1127.

    Article  Google Scholar 

  • Clarke, M. & R. F. McMahon, 1996a. Effects of hypoxia and low-frequency agitation on byssogenesis in the freshwater mussel Dreissena polymorpha (Pallas). Biological Bulletin 191: 413–420.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, M. & R. F. McMahon, 1996b. Effects of current velocity on byssal-thread production in the zebra mussel (Dreissena polymorpha). Canadian Journal of Zoology 74: 63–69.

    Article  Google Scholar 

  • Colomer, M. A., A. Margalida, L. Valencia & A. Palau, 2014. Application of a computational model for complex fluvial ecosystems: the population dynamics of zebra mussel Dreissena polymorpha as a case study. Ecological Complexity 20: 116–126.

    Article  Google Scholar 

  • Daraio, J. A., L. J. Weber & T. J. Newton, 2010a. Hydrodynamic modeling of juvenile mussel dispersal in a large river: the potential effects of bed shear and other parameters. Journal of the North American Benthological Society 29: 838–851.

    Article  Google Scholar 

  • Daraio, J. A., L. J. Weber, T. J. Newton & J. M. Nestler, 2010b. A methodological framework for integrating computational fluid dynamics and ecological models applied to juvenile freshwater mussel dispersal in the Upper Mississippi River. Ecological Modelling 221: 201–214.

    Article  Google Scholar 

  • Edwards, W. J., C. R. Rehmann, E. McDonald & D. A. Culver, 2005. The impact of a benthic filter feeder: limitations imposed by physical transport of algae to the benthos. Canadian Journal of Fisheries and Aqutic Sciences 62: 205–214.

    Article  Google Scholar 

  • Fetisov, A. N., A. V. Rubanovich, T. S. Slipchenko & V. A. Shevchenko, 1992. The structure of Dreissena polymorpha populations from basins adjacent to the Chernobyl atomic power station. Science of the Total Environment 112: 115–124.

    Article  CAS  PubMed  Google Scholar 

  • French, J. R. P., S. J. Nichols, J. M. Craig, J. D. Allen & M. G. Black, 2006. In situ growth of juvenile zebra mussels in a regulated stream. Journal of Freshwater Ecology 21: 25–30.

    Article  Google Scholar 

  • Gangloff, M. M. & J. W. Femeniella, 2007. Stream channel geomorphology influences mussel abundance in southern Appalachian streams, USA. Freshwater Biology 52: 64–74.

    Article  Google Scholar 

  • Garton, D. W., R. McMahon & A. M. Stoeckmann, 2014. Limiting environmental factors and competitive interactions between zebra and quagga mussels in North America. In Nalepa, T. F. & D. W. Schloesser (eds), Quagga and Zebra mussels: biology, impacts, and control, 2nd ed. CRC Press, Boca Raton FL: 383–402.

    Google Scholar 

  • Geyer, W. R. & R. Chant, 2006. The physical oceanography processes in the Hudson River esturary. In Levinton, J. S. & J. R. Waldman (eds), The Hudson River Estuary. Cambridge University Press, New York: 24–38.

    Chapter  Google Scholar 

  • Haddaway, N. R., P. Woodcock, B. Macura & A. Collins, 2015a. Making literature reviews more reliable through application of lessons from systematic reviews. Conservation Biology 29: 1596–1605.

    Article  CAS  PubMed  Google Scholar 

  • Haddaway, N. R., A. M. Collins, D. Coughlin & S. Kirk, 2015b. The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PLoS One 10: e0138237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampton, S. E., A. W. E. Galloway, S. M. Powers, T. Ozersky, K. H. Woo, R. D. Batt, S. G. Labou, C. M. O’Reilly, S. Sharma, N. R. Lottig, E. H. Stanley, R. L. North, J. D. Stockwell, R. Adrian, G. A. Weyhenmeyer, L. Arvola, H. M. Baulch, I. Bertani, L. L. Bowman, C. C. Carey, J. Catalan, W. Colom-Montero, L. M. Domine, M. Felip, I. Granados, C. Gries, H.-P. Grossart, J. Haberman, M. Haldna, B. Hayden, S. N. Higgins, J. C. Jolley, K. K. Kahilainen, E. Kaup, M. J. Kehoe, S. MacIntyre, A. W. Mackay, H. L. Mariash, R. M. McKay, B. Nixdork, P. Nõges, T. Nõges, M. Palmer, D. C. Pierson, D. M. Post, M. J. Pruett, M. Rautio, J. S. Read, S. L. Roberts, J. Rücker, S. Sadro, E. A. Silow, D. E. Smith, R. W. Sterner, S. G. E. A. Swann, M. A. Timofeyev, M. Toro, M. R. Twiss, R. J. Vogt, S. B. Watson, E. J. Whiteford & M. A. Xenopoulos, 2017. Ecology under lake ice. Ecology Letters 20: 98–111.

    Article  PubMed  Google Scholar 

  • Hansen, A. T., J. A. Czuba, J. Schwenk, A. Longjas, M. Danesh-Yazdi, D. J. Hombach & E. Foufoula-Georgiou, 2016. Coupling freshwater mussel ecology and river dynamics using a simplified dynamic interaction model. Freshwater Science 35: 200–215.

    Article  Google Scholar 

  • Hasler, C. T., J. D. Jeffrey, E. V. C. Schneider, K. D. Hannan, J. A. Tix & C. D. Suski, 2018. Biological consequences of weak acidification caused by elevated carbon dioxide in freshwater ecosystems. Hydrobiologia 806: 1–12.

    Article  CAS  Google Scholar 

  • Hastie, L. C., P. J. Boon & M. R. Young, 2000. Physical microhabitat requirements of freshwater pearl mussels, Margaritifera margaritifera (L.). Hydrobiologia 429: 59–71.

    Article  Google Scholar 

  • Higgins, S. M. & M. VanderZander, 2010. What a difference a species makes: a meta analysis of dreissenid mussel impacts on freshwater ecoystems. Ecological Monographs 80: 179–196.

    Article  Google Scholar 

  • Hincks, S. S. & G. L. Mackie, 1997. Effects of pH, calcium, alkalinity, hardness, and chlorophyll on the survival, growth, and reproductive success of zebra mussel (Dreissena polymorpha) in Ontario lakes. Canadian Journal of Fisheries and Aqutic Sciences 54: 2049–2057.

    Article  CAS  Google Scholar 

  • Horvath, T. & G. Lamberti, 1999. Mortality of zebra mussel, Dreissena polymorpha, veligers during downstream transport. Freshwater Biology 42: 69–76.

    Article  Google Scholar 

  • Horvath, T. G. & L. Crane, 2010. Hydrodynamic forces affect larval zebra mussel (Dreissena polymorpha) mortality in a laboratory setting. Aquatic Invasions 5: 379–385.

    Article  Google Scholar 

  • Johnson, P. D. & R. F. McMahon, 1998. Effects of temperature and chronic hypoxia on survivorship of the zebra mussel (Dreissena polymorpha) and Asian clam (Corbicula fluminea). Canadian Journal of Fisheries and Aquatic Sciences 55: 1564–1572.

    Article  Google Scholar 

  • Kozarek, J. L., M. Hondzo, M. E. Kjelland, C. D. Piercy & T. M. Swannack, 2018. Effects of turbulence exposure on zebra mussel (Dreissena polymorpha) larval survival. Aquatic Sciences 80: 12.

    Article  Google Scholar 

  • Levitan, D. R., 1995. Ecology of fertilization in free-spawning invertebrates. In McEdward, R. (ed.), Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton: 123–156.

    Google Scholar 

  • Lewandowski, K., 2001. Development of populations of Dreissena polymorpha (Pall.) in lakes. Folia Malacologica 9: 171–216.

    Article  Google Scholar 

  • MacIsaac, H. J., 1996. Population structure of an introduced species (Dreissena polymorpha) along a waveswept disturbance gradient. Oecologia 105: 484–492.

    Article  PubMed  Google Scholar 

  • Mari, L., E. Bertuzzo, R. Casagrandi & A. Rinaldo, 2011. A spatially-explicit model for the spread of the zebra mussel (Dreissena polymorpha) along river networks: some preliminary results. Water Resources and Research 47: W03523.

    Article  Google Scholar 

  • Marsden, J. E., P. Stangel & A. D. Shambauh, 2014. Influence of environmental factors on zebra mussel population expansion in Lake Champlain, 1994–2010. In Nalepa, T. F. & D. W. Schloesser (eds), Quagga and Zebra Mussels: Biology, Impacts, and Control, 2nd ed. CRC Press, Boca Raton: 33–53.

    Google Scholar 

  • Martel, A., 1993. Dispersal and recruitment of zebra mussels (Dreissena polymorpha) in a near-shore area in west central Lake Erie: the significance of post-metamorphic drifting. Canadian Journal of Fisheries and Aqutic Sciences 50: 3–12.

    Article  Google Scholar 

  • Molloy, D. P., 1998. The potential for using biological control technologies in the management of Dreissena spp. Journal of Shellfish Research 17: 177–183.

    Google Scholar 

  • Navarro, E., M. Bacardit, L. Caputo, T. Palau & J. Armengol, 2006. Limnological characterization and flow patterns of a three-coupled reservoir system and their influence on dreissena polymorpha populations and settlement during the stratification period. Lake and Reservoir Management 22: 293–302.

    Article  CAS  Google Scholar 

  • Oganjan, K., V. Lauringson, J. Kotta, L. Rostin & G. Martin, 2017. Factors affecting the recruitment of Amphibalanus improvisus and Dreissena polymorpha in a highly eutrophic brackish bay. Esturine, Coastal and Shelf Science 184: 37–45.

    Article  Google Scholar 

  • Olsen, J., J. J. Robertson, T. M. Swannack, R. F. McMahon, W. H. Nowlin & A. N. Schwalb, 2018. Dispersal of zebra mussels (Dreissena polymorpha) downstream of an invaded reservoir. Aquatic Invasions 13: 199–209.

    Article  Google Scholar 

  • Orihel, D. M., H. M. Baulch, N. J. Casson, R. L. North, C. T. Parsons, D. C. M. Seckar & J. J. Venkiteswaran, 2017. Internal phosphorus loading in Canadian freshwaters: a critical review and data analysis. Canadian Journal of Fisheries and Aqutic Sciences 74: 2005–2029.

    Article  CAS  Google Scholar 

  • Peyer, S. M., A. J. McCarthy & C. E. Lee, 2009. Zebra mussels anchor byssal threads faster and tighter than quagga mussels in flow. Journal of Experimental Biology 212: 2027–2036.

    Article  PubMed  Google Scholar 

  • Quinn, N. P. & J. D. Ackerman, 2011. The effect of near-bed turbulence on sperm dilution and fertilisation success of broadcast-spawning bivalves. Limnology and Oceanography Fluids and Environments 1(1): 176–193.

    Article  Google Scholar 

  • Quinn, N. P. & J. D. Ackerman, 2012. Biological and ecological mechanisms for overcoming sperm limitation in invasive dreissenid mussels. Aquatic Sciences 74: 415–425.

    Article  Google Scholar 

  • Quinn, N. P. & J. D. Ackerman, 2014. Effects of near-bed turbulence on the suspension and settlement of freshwater dreissenid mussel larvae. Freshwater Biology 59: 614–629.

    Article  Google Scholar 

  • Rajagopal, S., G. Van der Velde, H. A. Jenner, M. Van der Gaag & A. J. Kempers, 1996. Effects of temperature, salinity and agitation on byssus thread formation of zebra mussel Dreissena polymorpha. Netherlands Journal of Aquatic Ecology 30: 187–195.

    Article  CAS  Google Scholar 

  • Rehmann, C. R., J. A. Stoeckel & D. W. Schneider, 2003. Effect of turbulence on the mortality of zebra mussel veligers. Canadian Journal of Zoology 81: 1063–1069.

    Article  Google Scholar 

  • Riisgåard, H. U. & P. S. Larsen, 1995. Minireview: ciliary filter feeding and bio-fluid mechanics —present understanding and unsolved problems. Limnology and Oceanography 46: 882–891.

    Article  Google Scholar 

  • Rudstam, L. G. & C. J. Gandino, 2014. Zebra and quagga mussel dynamics in Onondaga Lake, New York. Annual Report 2013: 2005–2013.

    Google Scholar 

  • Sanz-Ronda, F. J., S. López-Sáenz, R. San-Martín & A. Palau-Ibars, 2014. Physical habitat of zebra mussel (Dreissena polymorpha) in the lower Ebro River (Northeastern Spain): influence of hydraulic parameters in their distribution. Hydrobiologia 735: 137–147.

    Article  CAS  Google Scholar 

  • Schloesser, D. W. & C. Schmuckal, 2012. Bibliography of Dreissena polymorpha (zebra mussels) and Dreissena rostriformis Bugensis (quagga mussels): 1989 to 2011. Journal of Shellfish Research 31: 1205–1263.

    Article  Google Scholar 

  • Schwalb, A. N. & J. D. Ackerman, 2011. Settling velocities of juvenile Lampsilini mussels (Mollusca: Unionidae): The influence of behavior. Journal of the North American Benthological Society 30: 702–709.

    Article  Google Scholar 

  • Smith, B. R., D. R. Edds & J. M. Goeckler, 2015. Lowhead dams and the downstream dispersal of zebra mussels. Hydrobiologia 755: 1–12.

    Article  Google Scholar 

  • Sprung, M., 1987. Ecological requirements of developing Dreissena polymorpha eggs. Archive fuer Hydrobiolgie Supplement 1: 69–86.

    Google Scholar 

  • Sprung, M., 1989. Field and laboratory observations of Dreissena polymorpha larvae—abundance, growth, mortality and food demands. Archive fuer Hydroiologie 115: 537–561.

    Google Scholar 

  • Strayer, D. L. & H. M. Malcom, 2006. Long-term demography of a zebra mussel (Dreissena polymorpha) population. Freshwater Biology 51: 117–130.

    Article  Google Scholar 

  • Theeiault, T.W., A.M. Weise, S.N. Higgins, Y. Guo & J. Duhaime, 2012. Risk assessment for three Dreissenid mussels (Dreissena polymorpha, Dreissena rostriformis bugensis, and Mytilopsis leucophaeata) in Canadian freshwater ecosystems. Canadian Science Advisory Secretariat Research Document 2012/174 v + 88p.

  • Thorp, J. H., J. E. Alexander & G. A. Cobbs, 2002. Coping with warmer, large rivers: a field experiment on potential range expansion of northern quagga mussels (Dreissena bugensis). Freshwater Biology 47: 1779–1790.

    Article  Google Scholar 

  • Tošenovský, E. & J. Kobak, 2016. Impact of abiotic factors on aggregation behaviour of the zebra mussel Dreissena polymorpha. Journal of Molluscan Studies 82: 55–66.

    Google Scholar 

  • Tuchman, N. C., R. L. Burks, C. A. Call & J. Smarrelli, 2004. Flow rate and vertical position influence ingestion rates of colonial zebra mussels (Dreissena polymorpha). Freshwater Biology 49: 191–198.

    Article  Google Scholar 

  • Warrack, S., J. K. Challis, M. L. Hanson & M. D. Rennie, 2018. Microplastics flowing into Lake Winnipeg: densities, sources, flux, and fish exposure. Proceedings of Manitoba’s Undergraduate Science and Engineering Research 3: 5–15.

    Google Scholar 

  • Wildish, D. & D. Kristmanson, 1997. Benthic suspension feeders and flow. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Zhang, Y., S. E. Stevens & T. Y. Wong, 1998. Factors affecting rearing of settled zebra mussels in a controlled flow-through system. The Progressive Fish-Culturist 60: 231–235.

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this review was provided by the Fisheries and Oceans Canada (Contract #F2434-170071). The authors thank Brendan Spearin and several anonymous reviewers for providing comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caleb T. Hasler.

Additional information

Handling editor: Eric Larson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasler, C.T., Leathers, J., Ducharme, A. et al. Biological effects of water velocity and other hydrodynamic characteristics of flow on dreissenid mussels. Hydrobiologia 837, 1–14 (2019). https://doi.org/10.1007/s10750-019-03976-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-03976-6

Keywords

Navigation