Skip to main content
Log in

Spatial heterogeneity of spring phytoplankton in a large tropical reservoir: could mass effect homogenize the heterogeneity by species sorting?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Reservoirs are river–lake hybrid ecosystems characterized by a marked longitudinal zonation and variable flushing rates depending on the use of stored waters. The structure of their phytoplankton is therefore subjected to the interplay between the environmental conditions of the different zones (species sorting) and the strength of the unidirectional flow (mass effect). The spatial distribution of spring phytoplankton was investigated in a tropical reservoir across its different zones. Phytoplankton displayed heterogeneous spatial patterns from the turbulent, nutrient-rich riverine zones to the relatively stable lacustrine zone. The analysis of this spatial heterogeneity revealed the relative importance of species sorting and mass effect in this morphologically complex reservoir. Different taxonomic groups showed different spatial patterns due to their specific physiological and morphological features, and as a result of the local environmental filtering. In the studied reservoir, the strength of the homogenizing effect of water flow did not smooth the spatial heterogeneity and played a weak role in constraining spring phytoplankton. Actually, water flow contributed to the spatial heterogeneity of phytoplankton by enhancing the local environmental differences caused by an operational drop in water level, and species sorting resulted as the primary forcing in determining spring phytoplankton spatial distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A.P.H.A., 2012. Standard Methods for the Examination of Water and Wastewater, 22nd ed. American Water Works Association and Water Pollution Control Federation, Washington, DC.

    Google Scholar 

  • Bahnwart, M. T., T. Hubener & H. Schubert, 1998. Downstream changes in phytoplankton composition and biomass in a lowland river-lake system (Warnow River, Germany). Hydrobiologia 391: 99–111.

    Article  Google Scholar 

  • Barone, R. & L. Naselli-Flores, 1994. Phytoplankton dynamics in a shallow, hypertrophic reservoir (Lake Arancio, Italy). Hydrobiologia 289: 199–214.

    Article  CAS  Google Scholar 

  • Benzie, A. H., 2005. The genus Daphnia (including Daphniopsis) (Anomopoda: Daphniidae). In Dumont, H. J. (ed.), Guides to the identification of the microinvertebrates of the continental waters of the world 21. Ghent and Backhuys Publishers, Kenobi Productions: 148–328.

    Google Scholar 

  • Barone, R. & L. Naselli-Flores, 2003. Distribution and seasonal dynamics of Cryptomonads in Sicilian water bodies. Hydrobiologia 502: 325–329.

    Article  Google Scholar 

  • Bivand, R. & G. Piras, 2015. Comparing implementations of estimation methods for spatial econometrics. Journal of Statistical Software 63: 1–36.

    Google Scholar 

  • Bivand, R., J. Hauke & T. Kossowski, 2013. Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods. Geographical Analysis 45: 150–179.

    Article  Google Scholar 

  • Blanchet, F.G., 2010. AEM: tools to construct asymmetric eigenvector maps (AEM) spatial variables. R Package ver. 03-2r88.

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Modelling directional spatial processes in ecological data. Eological Modelling 215: 325–336.

    Article  Google Scholar 

  • Blanchet, F. G., P. Legendre, R. Maranger, D. Monti & P. Pepin, 2011. Modelling the effect of directional spatial ecological processes at different scales. Oecologia 16: 357–368.

    Article  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.

    Article  Google Scholar 

  • Borges, P. A. F., S. Train & L. C. Rodriguez, 2008. Spatial and temporal variation in phytoplankton in two Brazilian reservoirs. Hydrobiologia 607: 63–74.

    Article  Google Scholar 

  • Bozelli, R. L., S. M. Thomaz, A. A. Padial, P. M. Lopes & L. M. Bini, 2015. Floods decreases zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753: 233–241.

    Article  CAS  Google Scholar 

  • Breiman, L., J. H. Freidman, R. A. Olshen & C. J. Stone, 1984. Classification and regression trees. Belmont Wadsworth, Belmont.

    Google Scholar 

  • Buffam, I., H. Laudon, J. Temnerud, C. M. Morth & K. Bishop, 2007. Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. Journal of Geophysical Research 112: G01022.

    Article  CAS  Google Scholar 

  • Caputo, L., L. Naselli-Flores, J. Ordonez & J. Armengol, 2008. Phytoplankton distribution along tropic gradients within and among reservoirs in Catalonia (Spain). Freshwater Biology 53: 2543–2556.

    Article  CAS  Google Scholar 

  • Clarke, A., R. Mac Nally, N. Bond & P. S. Lake, 2008. Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology 53: 1707–1721.

    Article  Google Scholar 

  • Dray, S., 2008. Spacemaker: spatial modelling. R package ver. 00-3.

  • Dray, S., 2013. Packfor: forward selection with permutation (Canoco p.46). R package ver. 0.0-8/r100.

  • Dufrene, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Frenette, J., P. Massicotte, J. F. Lapierre & J. P. Frenette, 2012. Colorful niches of phytoplankton shaped by the spatial connectivity in a large river ecosystem: a riverscape perspective. PLoS ONE 7(4): e35891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Field, C. B., M. J. Behrenfeld, J. T. Randerson & P. Falkowski, 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Finlay, B. J., 2002. Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063.

    Article  PubMed  CAS  Google Scholar 

  • Geraldes, A. & M. Boavida, 2007. Zooplankton assemblages in two reservoirs: one subjected to accentuated water level fluctuations, the other with more stable water levels. Aquatic Ecology 41: 273–284.

    Article  CAS  Google Scholar 

  • Göthe, E., D. G. Angeler & L. Sandin, 2013. Metacommunity structure in a small boreal stream network. Journal of Animal Ecology 82: 449–458.

    Article  PubMed  Google Scholar 

  • Heino, J., L. M. Bini, S. M. Karjalainen, H. Mykrä, J. Soininen, L. C. G. Vieira & J. A. F. Diniz-Filho, 2010. Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos 119: 129–137.

    Article  Google Scholar 

  • Hillebrand, H., C. Dürselen, D. Kirschterl, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Howeth, J. G., J. J. Weis, J. Brodersen, E. C. Hatton & D. M. Post, 2013. Intraspecific phenotypic variation in a fish predator affects multitrophic lake metacommunity structure. Ecology and Evolution 3: 5031–5044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, R., X. Duan, L. Peng, B.-P. Han & L. Naselli-Flores, 2017. Phytoplankton assemblages in a complex of interconnected reservoirs: the role of water transport in dispersal. Hydrobiologia 800: 1–14.

    Article  Google Scholar 

  • Huszar, V. L. M. & C. S. Reynolds, 1997. Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Para, Brazil): responses to gradual environmental change. Hydrobiologia 346: 169–181.

    Article  Google Scholar 

  • Huszar, V. L. M., J. C. Nabout, M. O. Appel, J. B. O. Santos, D. S. Abe & L. H. S. Silva, 2015. Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin. Journal of Plankton Research 37: 1190–1200.

    Google Scholar 

  • Jenkins, D. G. & A. L. Buikema, 1998. Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecological Monographs 68: 421–443.

    Article  Google Scholar 

  • Jenkins, D. G., C. R. Brescacin, C. V. Duxbury, J. A. Elliott, J. A. Evans, K. R. Grablow, M. Hillegass, B. N. Lyon, G. A. Metzger, M. L. Olandese, D. Pepe, G. A. Silvers, H. N. Suresch, T. N. Thompson, C. M. Trexler, G. E. Williams, N. C. Williams & S. E. Williams, 2007. Does size matter for dispersal distance? Global Ecology Biogeography 16: 415–425.

    Article  Google Scholar 

  • Kimmel, B. L., O. T. Lind & L. J. Paulson, 1990. Reservoir primary production. In Thorton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. Wiley, New York: 133–194.

    Google Scholar 

  • Leibold, M. A. & J. Norberg, 2004. Biodiversity in metacommunities: plankton as complex adaptive systems? Limnology and Oceanography 49: 1278–1289.

    Article  Google Scholar 

  • Leland, H. V., L. R. Brown & D. K. Mueller, 2001. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors. Freshwater Biology 46: 1139–1167.

    Article  Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  Google Scholar 

  • Lin, S. J., L. J. He, P. S. Huang & B. P. Han, 2005. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton. Ecological Science 24: 9–11.

    Google Scholar 

  • Lin, Q. Q., R. Hu & B. P. Han, 2003. Effect of hydrodynamics on nutrient and phytoplankton distribution in Liuxihe Reservoir. Acta Ecologica Sinica 23: 2278–2284.

    Google Scholar 

  • Lund, J. W. G., C. Klipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimating by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Meier, S. & J. Soininen, 2014. Phytoplankton metacommunity structure in subarctic rock pools. Aquatic Microbial Ecology 73: 81–91.

    Article  Google Scholar 

  • Moresco, G. A., J. C. Bortolini, J. D. Dias, A. Pineda, S. Jati & L. C. Rodrigues, 2017. Drivers of phytoplankton richness and diversity components in Neotropical floodplain lakes, from small to large spatial scales. Hydrobiologia. https://doi.org/10.1007/s10750-017-3214-3.

    Article  Google Scholar 

  • Moritz, C., C. N. Meynard, V. Devictor, K. Guizien, C. Labrune, J. M. Guarini & N. Mouquet, 2013. Disentangling the role of connectivity, environmental filtering, and spatial structure on metacommunity dynamics. Oikos 122: 1401–1410.

    Google Scholar 

  • Mouquet, N. & M. Loreau, 2003. Community patterns in source sink metacommunities. American Naturalist 162: 544–557.

    Article  PubMed  Google Scholar 

  • Naselli-Flores, L., 2014. Morphological analysis of phytoplankton as a tool to assess ecological state of aquatic ecosystems. The case of Lake Aarancio, Sicily, Italy. Inland Waters 4: 15–26.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 1997. Importance of water-level fluctuation on population dynamics of cladocerans in a hypertrophic reservoir (Lake Arancio, south-west Sicily, Italy). Hydrobiologia 360: 223–232.

    Article  Google Scholar 

  • Obertegger, U., G. Flaim, M. G. Braioni, R. Sommaruga, F. Corradii & A. Borsato, 2007. Water residence time as a driving force of zooplankton structure and succession. Aquatic Sciences 69: 575–583.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. Stevens, E. Szoecs & H. Wagner, 2017. Vegan: community ecology package.

  • Padisák, J. & C. S. Reynolds, 2003. Shallow lakes: the absolute, the relative, the functional and pragmatic. Hydrobiologia 506–509: 1–11.

    Article  Google Scholar 

  • Padisák, J., L. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Pychtecky, P. & P. Znachor, 2011. Sptial heterogeneity and seasonal succession of phytoplankton along the longitudinal gradient in a eutrophic reservoir. Hydrobiologia 663: 175–186.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 1990. Potamoplankton: paradigms, paradoxes and prognoses. In Round, F. E. (ed.), Algae and Aquatic Environment. Biopress, Bristol: 285–311.

    Google Scholar 

  • Reynolds, C. S., 1999. Phytoplankton assemblages in reservoirs. In Tundisi, J. G. & M. Straškraba (eds), Theoretical reservoir ecology and its applications. Backhuys Publishers, Leiden: 439–456.

    Google Scholar 

  • Reynolds, C. S., 2006. The ecology of phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S. & J. P. Descy, 1996. The production, biomass and structure of phytoplankton in large rivers. Archiv fur Hydrobiologie 113: 161–187.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Roelke, D. L., G. M. Gable & T. W. Valenti, 2010. Hydraulic flushing as a Prymnesium parvum bloom terminating mechanism in a subtropical lake. Harmful Algae 9: 323–332.

    Article  Google Scholar 

  • Rothhaupt, K. O., 1996. Laboratory experiments with a mixotrophic chrysophyte and obligately phagotrophic and phototrophic competitors. Ecology 77: 71–724.

    Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2012. Impairing the largest and most productive forest on our planet: how do human activities impact phytoplankton? Hydrobiologia 698: 375–384.

    Article  Google Scholar 

  • Santos, J. B. O., L. H. S. Silva, C. W. C. Branco & V. L. M. Huszar, 2016. The role of environmental conditions and geographical distances on the species turnover of the whole phytoplankton and zooplankton communities and their subsets in tropical reservoirs. Hydrobiologia 764: 171–186.

    Article  Google Scholar 

  • Schindler, D. W., 2006. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography 51: 356–363.

    Article  Google Scholar 

  • Sevindik, T. O., H. Tunca, A. Gönülol & Z. D. Kaya, 2017. Phytoplankton dynamics and structure, and ecological status estimation by the Q assemblage index: a comparative analysis in two shallow Mediterranean lakes. Turkish Journal of Botany 41: 25–36.

    Article  CAS  Google Scholar 

  • Shurin, J. B., 2000. Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81: 3074–3086.

    Article  Google Scholar 

  • Shurin, J. B., 2001. Interactive effects of predation and dispersal on zooplankton communities. Ecology 82: 3404–3416.

    Article  Google Scholar 

  • Thornton, K. W., B. L. Kinnel & F. F. Payne, 1990. Reservoir Limnology: Ecological Perspectives. Wiley, New York.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Science and Technology Project for Application of Guangdong Province, China (Nos: 2015B020235007 and 2016A030313098) and Guangdong scientific and technological innovation project for water resource (2016-08). We thank three anonymous reviewers for their careful reading and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Ping Han.

Additional information

Handling editor: Judit Padisák

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Niu, H., Xiao, L. et al. Spatial heterogeneity of spring phytoplankton in a large tropical reservoir: could mass effect homogenize the heterogeneity by species sorting?. Hydrobiologia 819, 109–122 (2018). https://doi.org/10.1007/s10750-018-3651-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3651-7

Keywords

Navigation