Skip to main content
Log in

Zooplankton assemblages in two reservoirs: one subjected to accentuated water level fluctuations, the other with more stable water levels

  • Original Paper
  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The abundance, composition and dynamics of zooplankton were followed in two reservoirs of the River Douro catchment. The Serra Serrada Reservoir is subject to marked fluctuations in water levels. The highest values of total phosphorus, soluble reactive phosphorus, nitrate, water colour and chlorophyll a were found during the minimum level phase. Rotifera was dominant except in late summer and autumn when the cladoceran Ceriodaphnia quadrangula or the copepod Tropocyclops prasinus replaced them as the dominant zooplankton. Among the rotifers the most common taxa were Keratella cochlearis, Conochilus sp. and Asplanchna priodonta. Maximum rotifer density was about 80,000 ind  m−3 in 2000, 200,000 ind  m−3 in 2001 and 100,000 ind m−3 in 2002. Among the crustacean zooplankton C. quadrangula achieved densities of up to 45,000 ind  m−3 and T. prasinus, up to 80,000 ind  m−3. Canonical correspondence analysis revealed a strong contribution of the variation in the stored water volume, temperature, total phosphorus, chlorophyll, nitrates, and water transparency to the observed, significant association between zooplankton assemblage and environmental variables. In the Azibo Reservoir, fluctuations in water level are smaller. Only total phosphorus, cholorophyll and conductivity varied seasonally. Cladocera and Copepoda were dominant during the whole study period. The most abundant taxa were Ceriodaphnia pulchella, Daphnia longispina, Diaphanosoma brachyurum, Bosmina longirostris and Copidodiaptomus numidicus. Cladocera achieved densities of up to 25,000 ind  m−3 and Copepoda up to 15,000 ind  m−3. Rotifera in general reached densities of up to 6,000 ind  m−3. On the basis of canonical correspondence analysis only temperature and conductivity were significantly associated with zooplankton assemblage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (1989) Standard methods for the examination of water and wastewater. American Public Health Association, Washington D.C.

    Google Scholar 

  • Armengol J, Sabater F, Riera JL et al. (1988) Longitudinal changes in the zooplankton communities along a series of reservoirs in the Guadiana River (W Spain). Verh Int Verein Limnol 23:1006–1010

    Google Scholar 

  • Błedzki LA, Ellinson AM (2000) Effects of water retention time on zooplankton of shallow rheolimnic reservoirs. Verh Int Verein Limnol 27:2865–2869

    Google Scholar 

  • Beklioglu M, Moss B (1996) Mesocosm experiments on the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and zooplankton communities. Freshw Biol 36:315–325

    Article  Google Scholar 

  • Boavida MJ (2000) The lakes of Serra da Estrela (Portugal). In: Martínez IG, Velasco MT (eds) Conservación de los lagos y humedales de alta montaña de la Península Ibérica. Universidad Autónoma de Madrid, Madrid, pp 79–86

    Google Scholar 

  • Boström B, Persson G, Broberg B (1988) Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170:21–34

    Google Scholar 

  • Caramujo MJ, Crispim MC, Boavida MJ (1997) Assessment of the importance of fish predation versus copepod predation on life history traits of Daphnia hyalina. Hydrobiologia 360:243–252

    Article  Google Scholar 

  • Cole JJ, Caraco NF, Likens GE (1990) Short-range atmospheric transport: a significant source of phosphorus to an oligotrophic lake. Limnol Oceanogr 35:1230–1237

    CAS  Google Scholar 

  • Formigo N (1990) Ictiofauna. In IZAN (ed) Caracterização ecológica da albufeira do Azibo, com vista à determinação das suas potencialidades no domínio dos recursos vivos, Acções Preparatórias do Programa Integrado de Desenvolvimento Regional de Trás- os-Montes

  • Geraldes AM, Boavida MJ (2003) Distinct age and landscape influence on two reservoirs under the same climate. Hydrobiologia 504:277–288

    Article  CAS  Google Scholar 

  • Geraldes AM, Boavida MJ (2004a) What factors affect the pelagic cladocerans of the Azibo meso-eutrophic reservoir? Ann Limnol-Int J Lim 40:101–111

    Google Scholar 

  • Geraldes AM, Boavida MJ (2004b) Do littoral macrophytes influence crustacean zooplankton distribution. Limnetica 23:57–64

    Google Scholar 

  • Geraldes AM, Boavida MJ (2005) Seasonal water level fluctuation: implications for reservoir limnology and management. Lakes Reservoirs Res Manage 10:59–69

    Article  Google Scholar 

  • Hart RC (2000) Comparative long-term periodicity of Diaphanosoma excisum in adjacent warm-water impoundments, with an evaluation of contributory factors. Verh Int Verein Limnol 27:1933–1939

    Google Scholar 

  • Hunt BP, Carbine WF (1951) Food of young pike, Esox lucius L. and associated fishes in Peterson’s ditches Houghton Lake Michigan. Trans Am Fish Soc 80:67–83

    Article  Google Scholar 

  • INAG (2006) Características das albufeiras: Dados de Base. (Cited 31 Mar 2006) http://www.snirh.inag.pt

  • INE (2001) Censos da População 2001. Instituto Nacional de Estatística, Lisboa

    Google Scholar 

  • James WF, Barko JW (1991) Littoral pelagic phosphorus dynamics during night time convective circulation. Limnol Oceanogr 36:949–960

    Article  CAS  Google Scholar 

  • Kimmel BL, Soballe DM, Adams SM et al (1988) Inter-reservoir interactions: Effects of a new reservoir on organic matter production and processing in a multiple-impoundment series. Verh Int Verein Limnol 23:985–994

    Google Scholar 

  • Lampert W, Sommer U (1997) Limnoecology – the ecology of lakes and streams. Oxford University Press, New York

    Google Scholar 

  • Lynch M (1978) Complex interactions between natural coexploiters – Daphnia and Ceriodaphnia. Ecology 59:552–564

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Naselli-Flores L (1999) Limnological aspects of Sicilian reservoirs: a comparative ecosystemic approach. In: Tundisi JG, Straškraba M (eds) Theoretical reservoir ecology. International Institute of Ecology, Brazilian Academy of Sciences, Brazil

  • Naselli-Flores L, Barone R (1994) Relationship between trophic state and plankton community structure in 21 Sicilian dam reservoirs. Hydrobiologia 275/276:197–205

    Article  Google Scholar 

  • Negro AI, De Hoyos C, Vega JC (2000) Phytoplankton structure and dynamics in Lake Sanabria and Valparaíso reservoir (NW Spain). Hydrobiologia 424:25–37

    Article  Google Scholar 

  • Pinel-Alloul B, Méthot G (1984) Analyse multidimensionnelle de l’evolution du zooplancton durant la mise en eau de trois reservoirs du Nord du Québec, Canada. Verh Int Verein Limnol 22:1444–1455

    Google Scholar 

  • Robarts RD, Zohary T, Jarvis AC et al (1992) Phytoplankton and zooplankton population dynamics and production of a recently formed African reservoir. Hydrobiologia 237:47–60

    Article  CAS  Google Scholar 

  • Schmid-Araya JM, Zuñiga LR (1992) Zooplankton community structure in two Chilean reservoirs. Arch Hydrobiol 123:305–335

    Google Scholar 

  • Siegfried CA, Kopache ME (1984) Zooplankton dynamics in a high mountain reservoir of southern California. Calif Fish Game 70:18–38

    Google Scholar 

  • Sladeček V (1983) Rotifers as indicators of water quality. Hydrobiologia 100:169–201

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. WH Freeman & Co, San Francisco

    Google Scholar 

  • Ter Braak CJF (1995) Ordination. In: Jongman RHG, Ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Vasconcelos VM (1990a) Seasonal fluctuation in the zooplankton community of Azibo reservoir (Portugal). Hydrobiologia 196:183–191

    Article  Google Scholar 

  • Vasconcelos VM (1990b) First approach to the limnology of Azibo reservoir (Portugal). Publ Inst Zool “Dr A Nobre” 218:21

    Google Scholar 

  • Watts CJ (2000a) The effect of organic matter on sedimentary phosphorus release in an Australian reservoir. Hydrobiologia 431:13–25

    Article  CAS  Google Scholar 

  • Watts CJ (2000b) Seasonal phosphorus release from exposed, re-inundated littoral sediments of two Australian reservoirs. Hydrobiologia 431:27–39

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology – lake and river ecosystems. Academic Press, New York

    Google Scholar 

  • Winfield IJ, Townsend CR (1992) The role of cyprinids in ecosystems. In: Winfield IJ (ed) Cyprinid fishes, systematics, biology and exploitation. Chapman & Hall, London

    Google Scholar 

Download references

Acknowledgements

This study was financed by Fundação para a Ciência e a Tecnologia, Portugal (PRAXIS XXI/C/BIA/11012/98). AMG was awarded a 4/5.3/PRODEP/2000 doctoral fellowship. M. J. Caramujo kindly provided copepod identification. The assistance of A. Ribeiro, A. Teixeira and N. Marcos in the field is appreciated. Pertinent comments and suggestions by an anonymous referee are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Geraldes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geraldes, A.M., Boavida, MJ. Zooplankton assemblages in two reservoirs: one subjected to accentuated water level fluctuations, the other with more stable water levels. Aquat Ecol 41, 273–284 (2007). https://doi.org/10.1007/s10452-006-9057-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-006-9057-z

Keywords

Navigation