Skip to main content

Advertisement

Log in

The influence of stream discontinuity and life history strategy on mussel community structure: a case study from the Sabine River, Texas

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The impoundment of running waters is a threat to freshwater mussels and has only been cursorily examined in Texas. To address this, we evaluate mussel assemblage structure in the Sabine River downstream of a flood control and hydropower reservoir. We use the serial discontinuity concept (SDC) and the Life History Continuum model (LHCM) to explain relationships between stream position (i.e., downstream distance from either dam) and mussel species richness, catch-per-unit effort (CPUE), and life history strategy. Using 90th, 85th, and 80th quantile regression models, we observed that mussel species richness and abundance were reduced for stream segments located near Lake Tawakoni and Toledo Bend Reservoir and that these reductions decreased with distance from either reservoir. We also observed significant shifts in life history composition of mussel assemblages depending on stream position from either dam. Opportunistic strategists were more abundant in reaches located immediately downstream of Lake Tawakoni and Toledo Bend Reservoir whereas periodic and equilibrium strategists were most abundant in reaches located at intermediate distances from either reservoir. Findings from this study confirm the negative impact large impoundments have on downstream mussel populations and demonstrate the value of using the SDC and LHCM for evaluating mussel response to river impoundment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, D. C. & C. C. Vaughn, 2010. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. Journal of the North American Benthological Society 29: 383–394.

    Article  Google Scholar 

  • Atkinson, C. L. & C. C. Vaughn, 2015. Biogeochemical hotspots: temporal and spatial scaling of the impact of freshwater mussels on ecosystem function. Freshwater Biology 60: 563–574.

    Article  CAS  Google Scholar 

  • Barnhart, C. M., W. R. Haag & W. N. Roston, 2008. Adaptations to host infection and larval parasitism in Unionoida. Journal of North American Benthological Soceity 27: 370–394.

    Article  Google Scholar 

  • Baxter, R. M., 1977. Environmental effects of dams and impoundments. Annual Review of Ecological Systematics 8: 225–283.

    Article  Google Scholar 

  • Blakeslee, C. J., H. S. Galbraith, L. S. Robertson & J. White, 2013. The effects of salinity exposure on multiple life stages of a common freshwater mussel, Elliptio complanata. Environmental Toxicology and Chemistry 32: 2849–2854.

    Article  CAS  PubMed  Google Scholar 

  • Brim, B. J. & J. Mossa, 1999. Sediment, land use, and freshwater mussels: prospects and problems. Journal of the North American Benthological Society 18: 99–117.

    Article  Google Scholar 

  • Burlakova, L. E., A. Y. Karatayev, V. A. Karatayev, M. E. May, D. L. Bennett & M. J. Cook, 2011. Biogeography and conservation of freshwater mussels (Bivalvia: Unionidae) in Texas: patterns of diversity and threats. Diversity and Distributions 17: 393–407.

    Article  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  • Cade, B. S. & B. R. Noon, 2003. A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment 1: 412–420.

    Article  Google Scholar 

  • Crawley, M. J., 2007. The R Book. John Wiley & Sons Limited, West Sussex.

    Book  Google Scholar 

  • Dowell, C. L. & S. D. Breeding, 1967. Dams and Reservoirs in Texas: Historical and Descriptive Information. Texas Water Development Board Report No. 48: 274 pp.

  • Dunham, J. B., B. S. Clad & J. W. Terrell, 2002. Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles. Transactions of the American Fisheries Society 131: 86–98.

    Article  Google Scholar 

  • Ellis, L. C. & N. E. Jones, 2013. Longitudinal trends in regulated rivers: a review and synthesis within the context of the serial discontinuity concept. Environmental Reviews 21: 136–148.

    Article  Google Scholar 

  • Federal Energy Regulatory Commission (FERC), 2013. Final environmental impact statement for hydropower license. Toledo Bend Hydroelectric Project No. 2305-036, 304 pp.

  • Ford, N. B. & M. L. Nicholson, 2006. A survey of freshwater mussels (Unionidae) of the Old Sabine Wildlife Management Area, Smith County, Texas. Texas Journal of Science 58: 243–254.

    Google Scholar 

  • Ford, N. B., J. Gullett & M. E. May, 2009. Diversity and abundance of unionid mussels in three sanctuaries on the Sabine River in northeast Texas. Texas Journal of Science 61: 279–294.

    Google Scholar 

  • Graf, W. L., 1999. Dam nation: A geographic census of American dams and their large-scale hydrologic impacts. Water Resources Research 35: 1305–1311.

  • Haag, W. R., 2012. North American Freshwater Mussels: Natural History, Ecology, and Conservation. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Haag, W. R. & M. L. Warren, 1998. Role of ecological factors and reproductive strategies in structuring freshwater mussel communities. Canadian Journal of Fisheries and Aquatic Sciences 55: 297–306.

    Article  Google Scholar 

  • Hao, L. & D. Q. Naiman, 2007. Quantile Regression. Sage Publications, Thousand Oaks.

    Google Scholar 

  • Howells, R. G., R. W. Neck & H. D. Murray, 1996. Freshwater Mussels of Texas. Texas Parks and Wildlife Press, Austin.

    Google Scholar 

  • Howells, R. G., C. M. Mather & J. A. M. Bergmann, 2000. Impacts of dewatering and cold on freshwater mussels (Unionidae) in B.A. Steinhagen Reservoir. Texas. The Texas Journal of Science 52: 93–104.

    Google Scholar 

  • Huang, J., Y. Cao & K. S. Cummings, 2011. Assessing sampling adequacy of mussel diversity surveys in wadeable Illinois streams. Journal of the North American Benthological Society 30: 932–934.

    Article  Google Scholar 

  • Humphries, P., H. Keckeis & B. Finlayson, 2014. The river wave concept: integrating river ecosystem models. BioScience 64: 870–882.

    Article  Google Scholar 

  • Karatayev, A. Y., T. D. Miller & L. E. Burlakova, 2012. Long-term changes in unionid assemblages in the Rio Grande, one of the World’s top 10 rivers at risk. Aquatic Conservation: Marine and Freshwater Ecosystems 22: 206–219.

    Article  Google Scholar 

  • Koenker, R. & G. Bassett Jr, 1978. Regression quantiles. Econometrica 46: 33–50.

    Article  Google Scholar 

  • Konrad, C. P., M. D. Brasher & J. T. May, 2008. Assessing streamflow characteristics as limiting factors on benthic invertebrate assemblages in streams across the western United States. Freshwater Biology 53: 1983–1998.

    Article  Google Scholar 

  • Layzer, J. B., M. E. Gordon & R. M. Anderson, 1993. Mussels: the forgotten fauna of regulated rivers. A case study of the Caney Fork River. Regulated Rivers: Research & Management 8: 63–71.

    Article  Google Scholar 

  • Lyons, M. S., R. A. Krebs, J. P. Holt, L. J. Rundo & W. Zawiski, 2007. Assessing causes of change in freshwater mussels (Bivalvia: Unionidae) in the Black River, Ohio. American Midland Naturalist 158: 1–15.

    Article  Google Scholar 

  • McAllister, D., J. Craig, N. Davidson, D. Murray & M. Seddon, 2001. Biodiversity impacts of large dams. Background Paper No. 1. In The International Union for Conservation of Nature, and United Nations Environmental Programme. Gland: 63 pp.

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Monographs in Population Biology, Vol. 1. Princeton University Press, Princeton.

    Google Scholar 

  • Magilligan, F. J. & K. H. Nislow, 2005. Changes in hydrologic regime by dams. Geomorphology 71: 61–78.

    Article  Google Scholar 

  • Mims, M. C. & J. D. Olden, 2012. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93: 35–45.

    Article  PubMed  Google Scholar 

  • Neck, R. W., 1986. Freshwater bivalves of Lake Tawakoni, Sabine River, Texas. The Texas Journal of Science 38: 241–249.

    Google Scholar 

  • Neck, R. W., 1990. Geologic substrate and human impact on bivalves of Lake Lewisville, Trinity River, Texas. The Nautilus 104: 16–25.

    Google Scholar 

  • National Inventory of Dams (NID), 2014. U. S. Army Corps of Engineers National Inventory of Dams. http://geo.usace.army.mil/pgis/f?p=397:1:0::NO:::.

  • Parmalee, P. W. & A. E. Bogan, 1998. The Freshwater Mussels of Tennessee. The University of Tennessee Press, Knoxville.

    Google Scholar 

  • Phillips, J. D., 2008. Geomorphic controls and transition zones in the lower Sabine River. Hydrological Processes 22: 2424–2437.

    Article  Google Scholar 

  • Pianka, E. R., 1970. On r- and K-selection. American Midland Naturalist 104: 592–597.

    Article  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Poff, N. L. & D. D. Hart, 2002. How dams vary and why it matters for the emerging science of dam removal. BioScience 52: 659–668.

    Article  Google Scholar 

  • Quinn, J. W. & T. J. Kwak, 2003. Fish assemblage changes in an Ozark River after impoundment: a long-term perspective. Transactions of the American Fisheries Society 132: 110–119.

    Article  Google Scholar 

  • R Core Development Team, 2011. R (version 2.11.2): A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

  • Randklev, C. R., B. J. Lundeen, J. Skorupski, J. H. Kennedy & S. Wolverton, 2011. Toledo Bend relicensing project: Lower Sabine River mussel study. Final report to Sabine River Authority: 19 pp.

  • Randklev, C. R., M. S. Johnson, E. T. Tsakiris, J. Groce & N. Wilkins, 2013. Status of the freshwater mussel (Family: Unionidae) fauna in the mainstem of the Leon River, Texas. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 390–404.

    Article  Google Scholar 

  • Randklev, C. R., M. Cordova, J. Groce, E. Tsakiris & B. Sowards, 2014. Freshwater mussel survey (Family: Unionidae) of the lower Sabine River between U. S. Hwy 190 and Orange, Texas. Final report to Texas Parks and Wildlife :37 pp.

  • Rogers, W. H., 1992. Quantile regression standard errors. Stata Technical Bulletin 9: 16–19.

    Google Scholar 

  • Rosenberg, D. M., P. McCully & C. M. Pringle, 2000. Globalscale environmental effects of hydrological alterations: introduction. Bioscience 50: 746–751.

    Article  Google Scholar 

  • Sabine-Neches Basin and Bay Expert Science Team (Sabine-Neches BBEST), 2009. Environmental flows recommendations report. Final report to Sabine and Neches Rivers and Sabine Lake Bay and Basin and Bay Area Stakeholder Committee, Environmental Flows Advisory Group, and Texas Commission on Environmental Quality, 1215 pp.

  • Sabine River Authority (SRA), 2014. Sabine River Authority Projects. www.sratx.org/projects/ibp.asp.

  • Skalak, K. J., A. J. Benthem, E. R. Schenk, C. R. Hupp, J. M. Galloway, R. A. Nustad & G. J. Wiche, 2013. Large dams and alluvial rivers in the Anthropocene: the impacts of the Garrison and Oahe Dams on the upper Missouri River. Anthropocene 2: 51–64.

    Article  Google Scholar 

  • Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 337–365.

    Article  Google Scholar 

  • Southwood, T. R. E., 1988. Tactics, strategies and templates. Oikos 52: 3–18.

    Article  Google Scholar 

  • Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford.

    Google Scholar 

  • Strayer, D. L., 2014. Understanding how nutrient cycles and freshwater mussels (Unionoida) affect one another. Hydrobiologia 735: 277–292.

    Article  CAS  Google Scholar 

  • Suttkus, R. D. & M. F. Mettee, 2009. Post-impoundment changes in the Cyprinid fauna of the lower Sabine River, Louisiana and Texas. Southeastern Fishes Council Proceedings 51: 1–8.

    Google Scholar 

  • Texas Parks and Wildlife Department (TPWD), 2010. Threatened and endangered nongame species. Texas Register 35: 249–251.

    Google Scholar 

  • Texas Water Development Board (TWDB), 2012. State water plan. Texas Water Development Board, 314 pp. www.twdb.texas.gov/publications/state_water_plan/2012/2012_SWP.pdf.

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: bio complexity in river networks across space and time. River and Research Applications 22: 123–147.

    Article  Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2008. The Riverine Ecosystem Synthesis: Towards conceptual cohesiveness in river science. Academic Press, London.

    Google Scholar 

  • U. S. Fish and Wildlife Service (USFWS), 2001. Endangered and threatened wildlife and plants: Review of plant and animal species that are candidates or proposed for listing as endangered or threatened, annual notice of findings on recycled petitions, and annual description of progress on listing actions; proposed rule. Federal Register 66: 54808–54832.

    Google Scholar 

  • U. S. Fish and Wildlife Service (USFWS), 2011. Endangered and threatened wildlife and plants: 12-month finding on a petition to list Texas fatmucket, golden orb, smooth pimpleback, Texas pimpleback, and Texas fawnsfoot as threatened or endangered. Federal Register 76: 62166–62212.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vaughn, C. C. & C. M. Taylor, 1999. Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conservation Biology 13: 912–920.

    Article  Google Scholar 

  • Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.

    Article  Google Scholar 

  • Vaughn, C. C. & D. E. Spooner, 2004. Status of the mussel fauna of the Poteau River and implications for commercial harvest. American Midland Naturalist 152: 336–346.

    Article  Google Scholar 

  • Vaughn, C. C. & D. E. Spooner, 2006. Unionid mussels influence macroinvertebrate assemblage structure in streams. Journal of the North American Benthological Society 25: 691–700.

    Article  Google Scholar 

  • Vaughn, C. C., S. J. Nichols & D. E. Spooner, 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27: 409–423.

    Article  Google Scholar 

  • Vaughn, C. C., C. L. Atkinson & J. P. Julian, 2015. Drought-induced changes in flow regimes lead to long-term losses in mussel-provided ecosystem services. Ecology and Evolution 5: 1291–1305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaz, S., C. S. Martin, P. D. Eastwood, B. Ernande, A. Carpentier, G. J. Meaden & F. Coppin, 2008. Modelling species distributions using regression quantiles. Journal of Applied Ecology 45: 204–217.

    Article  Google Scholar 

  • Voelz, N. J. & J. V. Ward, 1990. Macroinvertebrate responses along a complex regulated stream environmental gradient. Regulated Rivers: Research & Management 5: 365–374.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds.), Dynamics of Lotic Ecosystems. Ann Arbor Science Publishers, Ann Arbor: 29–42.

    Google Scholar 

  • White, D. S. & S. J. White, 1977. Observations on the pelecypods of Lake Texoma, Texas and Oklahoma, after more than thirty years of impoundment. The Southwestern Naturalist 22: 235–254.

    Article  Google Scholar 

  • Williams, J. D., S. L. H. Fuller & R. Grace, 1992. Effects of impoundments on freshwater mussels (Mollusca: Bivalvia: Unionidae) in the main channel of the Black Warrior and Tombigbee Rivers in western Alabama. Bulletin of the Alabama Museum of Natural History 13: 1–10.

    Google Scholar 

  • Williams, J. D., J. T. Garner & A. E. Bogan, 2008. Freshwater Mussels of Alabama and the Mobile Basin in Georgia. The University of Alabama Press, Tuscaloosa, Mississippi and Tennessee.

    Google Scholar 

  • Williams, J. D., R. S. Butler, G. L. Warren & N. A. Johnson, 2014. Freshwater Mussels of Florida. The University of Alabama Press, Tuscaloosa.

    Google Scholar 

  • Winemiller, K. O., 2005. Life history strategies, population regulation, and implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 62: 872–885.

    Article  Google Scholar 

  • Winemiller, K. O. & K. A. Rose, 1992. Patterns of life history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Science 49: 2196–2218.

    Article  Google Scholar 

  • Wisniewski, J. M., N. M. Rankin, D. A. Weiler, B. A. Strickland & H. C. Chandler, 2013. Occupancy and detection of benthic macroinvertebrates in the lower Flint River, Georgia, USA. Freshwater Science 32: 1122–1135.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mark Cordova, Joe Skorupski, Ben Lundeen, Eric Tsakiris, Melissa Broderick, Ashley Walters, and Bryan Sowards for their assistance in the field. We gratefully acknowledge Ben Bosman and Wendell Haag for valuable comments on earlier drafts of this manuscript. Funding for this project was provided in part by the Texas Parks and Wildlife Department, the United States Fish and Wildlife Service, and the Sabine River Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Randklev.

Additional information

Handling editor: Marcello Moretti

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randklev, C.R., Ford, N., Wolverton, S. et al. The influence of stream discontinuity and life history strategy on mussel community structure: a case study from the Sabine River, Texas. Hydrobiologia 770, 173–191 (2016). https://doi.org/10.1007/s10750-015-2586-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2586-5

Keywords

Navigation