Skip to main content

Advertisement

Log in

Understanding how nutrient cycles and freshwater mussels (Unionoida) affect one another

  • FRESHWATER BIVALVES
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Nutrient loads and nutrient cycling, especially of phosphorus and nitrogen, are among the most important controls on the character of freshwater ecosystems and have been greatly affected by human actions. Despite the widespread importance of nutrients in freshwater ecosystems, the varied linkages between nutrient cycling and freshwater mussel populations have not been thoroughly described. Here, I explore three of these linkages. First, I suggest that nutrient loads are related to the well-being of mussel populations through several mechanisms, probably producing a nonlinear and non-monotonic relationship between nutrient loads and mussel populations. Second, I discuss the ability of mussels to spatially focus nutrients from the overlying water onto the sediments, which has not been fully appreciated, perhaps because nutrient cycling has been viewed chiefly from the viewpoint of the well-mixed water column rather than the patchy sediments. Third, I discuss the ability of mussel populations to accumulate and release nutrients, introducing time lags into nutrient dynamics and stoichiometry (“nutrient capacitance”). Finally, I propose a speculative analysis of the role of freshwater mussels in the nutrient cycles of pristine river systems, which must have been much greater than in modern rivers, with their high nutrient loads and depleted mussel populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters, 2nd ed. Springer, Dordrecht.

    Google Scholar 

  • Anthony, J. L. & J. A. Downing, 2001. Exploitation trajectory of a declining fauna: a century of freshwater mussel fisheries in North America. Canadian Journal of Fisheries and Aquatic Sciences 58: 2071–2090.

    Google Scholar 

  • Arter, H. E., 1989. Effect of eutrophication on species composition and growth of freshwater mussels (Mollusca, Unionidae) in Lake Hallwil (Aargau, Switzerland). Aquatic Sciences 51: 87–99.

    Google Scholar 

  • Augspurger, T., A. E. Keller, M. C. Black, W. G. Cope & F. J. Dwyer, 2003. Water quality guidance for protection of freshwater mussels (Unionidae) from ammonia exposure. Environmental Toxicology and Chemistry 22: 2569–2575.

    CAS  PubMed  Google Scholar 

  • Barnhart, M. C., W. R. Haag & W. N. Roston, 2008. Adaptations to host infection and larval parasitism in Unionoida. Journal of the North American Benthological Society 27: 370–394.

    Google Scholar 

  • Basen, T., D. Martin-Kreuzburg & K. O. Rothhaupt, 2011. Role of essential lipids in determining food quality for the invasive freshwater clam Corbicula fluminea. Journal of the North American Benthological Society 30: 653–664.

    Google Scholar 

  • Bauer, G., 1992. Variation in the life span and size of the freshwater pearl mussel. Journal of Animal Ecology 61: 425–436.

    Google Scholar 

  • Bauer, G., 1998. Allocation policy of female freshwater pearl mussels. Oecologia 117: 90–94.

    Google Scholar 

  • Bauer, G., S. Hochwald & W. Silkenat, 1991. Spatial distribution of freshwater mussels: the role of host fish and metabolic rate. Freshwater Biology 26: 377–386.

    Google Scholar 

  • Bergstrom, A. K. & M. Jansson, 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology 12: 635–643.

    Google Scholar 

  • Billen, G., J. Garnier, J. Némery, M. Sebilo, A. Sferratore, S. Barles, P. Benoit & M. Benoit, 2007. A long-term view of nutrient transfers through the Seine River continuum. Science of the Total Environment 375: 80–97.

    CAS  PubMed  Google Scholar 

  • Bishop, M. J., M. R. Cole, S. L. Taylor, E. M. Wilkie & B. P. Kelaher, 2008. Size-specific predation by dominant consumers maintains a ‘trophic cul-de-sac’. Marine Ecology Progress Series 354: 75–83.

    Google Scholar 

  • Bódis, E., B. Tóth & R. Sousa. 2013. Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web. Hydrobiologia. doi:10.1007/s10750-013-1445-5.

  • Bontes, B. M., A. M. Verschoor, L. M. D. Pires, E. van Donk & B. W. Ibelings, 2007. Functional response of Anodonta anatine feeding on a green alga and four strains of cyanobacteria, differing in shape, size and toxicity. Hydrobiologia 584: 191–204.

    Google Scholar 

  • Brush, G. S., 2009. Historical land use, nitrogen, and coastal eutrophication: a paleoecological perspective. Estuaries and Coasts 32: 18–28.

    CAS  Google Scholar 

  • Caraco, N. F., 1995. Influence of human populations on P transfers to aquatic systems: a regional scale study using large rivers. In Tiessen, H. (ed), Phosphorus in the Global Environment. Wiley, New York, NY: 235–244.

    Google Scholar 

  • Carlander, H. B., 1954. A History of Fish and Fishing in the Upper Mississippi River. Upper Mississippi River Conservation Committee, Rock Island, IL.

    Google Scholar 

  • Carpenter, S. R., 2005. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proceedings of the National Academy of Sciences 102: 10002–10005.

    CAS  Google Scholar 

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Google Scholar 

  • Cherry, D. S., J. L. Scheller, N. L. Cooper & J. R. Bidwell, 2005. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) I: water-column ammonia levels and ammonia toxicity. Journal of the North American Benthological Society 24: 369–380.

    Google Scholar 

  • Christian, A. D., B. G. Crump & D. J. Berg, 2008. Nutrient release and ecological stoichiometry of freshwater mussels (Bivalvia: Unionidae) in 2 small, regionally distinct streams. Journal of the North American Benthological Society 27: 440–450.

    Google Scholar 

  • Church, M., 1996. Channel morphology and typology. In Petts, G. & P. Calow (eds), River Flows and Channel Forms. Blackwell Science, Oxford, UK: 185–202.

    Google Scholar 

  • Claassen, C., 1994. Washboards, pigtoes, and muckets: historic musseling in the Mississippi watershed. Historical Archaeology 28: 1–145.

    Google Scholar 

  • Coker, R. E., 1919. Fresh-water mussels and mussel industries of the United States. Bulletin of the Bureau of Fisheries 36: 13–89.

    Google Scholar 

  • Coker, R. E., A. F. Shira, H. W. Clark & A. D. Howard, 1921. Natural history and propagation of fresh-water mussels. Bulletin of the Bureau of Fisheries 37: 77–181.

    Google Scholar 

  • Cole, J. J., 2013. The carbon cycle, with a brief introduction to global biogeochemistry. In Weathers, K. C., D. L. Strayer & G. E. Likens (eds), Fundamentals of Ecosystem Science. Academic Press, Oxford, UK: 109–135.

  • Cooke, G. D., E. B. Welch, S. Peterson & S. A. Nichols, 2005. Restoration and Management of Lakes and Reservoirs, 3rd ed. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Cooper, N. L., J. R. Bidwell & D. S. Cherry, 2005. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) II: porewater ammonia. Journal of the North American Benthological Society 24: 381–394.

    Google Scholar 

  • Cope, W. G., R. B. Bringoff, D. B. Buchwalter, T. J. Newton, C. G. Ingersoll, N. Wang, T. Augsperger, F. J. Dwyer, M. C. Barnhart, R. J. Neves & E. Hammer, 2008. Differential exposure, duration, and sensitivity of unionoidean bivalve life stages to environmental contaminants. Journal of the North American Benthological Society 27: 451–462.

    Google Scholar 

  • Danglade, E., 1914. The mussel resources of the Illinois River. Bureau of Fisheries Document 804: 1–48.

    Google Scholar 

  • Dodds, W. K. & M. R. Whiles, 2011. Freshwater Ecology: Concepts and Environmental Applications of Limnology, 2nd ed. Academic Press, Burlington, MA.

    Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2005. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • Ellis, M. M., 1936. Erosion silt as a factor in aquatic environments. Ecology 17: 29–42.

    Google Scholar 

  • Findlay, S., 2010. Stream microbial ecology. Journal of the North American Benthological Society 29: 170–181.

    Google Scholar 

  • Finlay, J. C., 2011. Straem size and human influences on ecosystem production in river networks. Ecosphere 2: art87. doi:10.1890/ES11-00071.1

  • Freidrichs, M., T. Leipe, F. Peine & G. Graf, 2009. Impact of macrozoobenthic structures on near-bed sediment fluxes. Journal of Marine Systems 75: 336–347.

    Google Scholar 

  • Gagnon, P. M., S. W. Golladay, W. K. Michener & M. C. Freeman, 2004. Drought responses of freshwater mussels (Unionidae) in coastal plain tributaries of the Flint River basin, Georgia. Journal of Freshwater Ecology 19: 667–679.

    Google Scholar 

  • Galbraith, H. S., D. E. Spooner & C. C. Vaughn, 2010. Synergistic effects of regional climate patterns and local water management on freshwater mussel communities. Biological Conservation 143: 1175–1183.

    Google Scholar 

  • Gergs, R., J. Grey & K.-O. Rothhaupt, 2011. Temporal variation in zebra mussel (Dreissena polymorpha) density structure the benthic food web and community composition on hard substrates in Lake Constance, Germany. Biological Invasions 13: 2727–2738.

    Google Scholar 

  • Gergs, R., K. Rinke & K.-O. Rothhaupt, 2009. Zebra mussels mediate benthic-pelagic coupling by biodeposition and changing detrital stoichiometry. Freshwater Biology 54: 1379–1391.

    Google Scholar 

  • Graf, G. & R. Rosenberg, 1997. Bioresuspension and biodeposition: a review. Journal of Marine Systems 11: 269–278.

    Google Scholar 

  • Gutiérrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribarne, 2003. Mollusks as ecosystem engineers: their functional roles as shell producers in aquatic habitats. Oikos 101: 79–90.

    Google Scholar 

  • Haag, W. R., 2012. North American Freshwater Mussels: Natural History, Ecology, and Conservation. Cambridge University Press, New York.

    Google Scholar 

  • Haag, W. R. 2013. The role of fecundity and reproductive effort in defining life history strategies of North American freshwater mussels. Biological Reviews. In press.

  • Haag, W. R. & A. L. Rypel, 2011. Growth and longevity in freshwater mussels: evolutionary and conservation implications. Biological Reviews 86: 225–247.

    PubMed  Google Scholar 

  • Haag, W. R. & J. L. Staton, 2003. Variation in fecundity and other reproductive traits in freshwater mussels. Freshwater Biology 48: 2118–2130.

    Google Scholar 

  • Haag, W. R. & M. L. Warren, 2008. Effects of severe drought on freshwater mussel assemblages. Transactions of the American Fisheries Society 137: 1165–1178.

    Google Scholar 

  • Hamilton, S. K., 2012. Biogeochemical time lags may delay responses of streams to ecological restoration. Freshwater Biology 57(Supplement 1): 43–57.

    Google Scholar 

  • Hastie, L. C., P. J. Cosgrove, N. Ellis & M. J. Gaywood, 2003. The threat of climate change to freshwater pearl mussel populations. Ambio 32: 40–46.

    PubMed  Google Scholar 

  • Howard, J. K. & K. M. Cuffey, 2006. The functional role of native freshwater mussels in the fluvial benthic environment. Freshwater Biology 51: 460–474.

    Google Scholar 

  • Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch & Z. L. Zhu, 1996. Regional nitrogen budgets and riverine N & P fluxes to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35: 75–139.

    CAS  Google Scholar 

  • Huebner, J. D., 1982. Seasonal variation in two species of unionid clams from Manitoba, Canada: respiration. Canadian Journal of Zoology 60: 650–654.

    Google Scholar 

  • Iversen, M. H. & H. Ploug, 2010. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7: 2613–2624.

    CAS  Google Scholar 

  • Jokela, J., 1996. Within-season reproductive and somatic energy allocation in a freshwater clam, Anodonta piscinalis. Oecologia 105: 167–174.

    Google Scholar 

  • Juhel, G., J. Davenport, J. O’Halloran, S. C. Culloty, R. M. O’Riordan, K. F. James, A. Furey & O. Allis, 2006. Impacts of microcystins on the feeding behavior and energy balance of zebra mussels, Dreissena polymorpha: a bioenergetics approach. Aquatic Toxicology 79: 391–400.

    CAS  PubMed  Google Scholar 

  • Kalff, J., 2001. Limnology. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Kryger, J. & H. U. Riisgard, 1988. Filtration rate capacities in 6 species of European freshwater bivalves. Oecologia 77: 34–38.

    Google Scholar 

  • Lampman, G. G., N. F. Caraco & J. J. Cole, 1999. Spatial and temporal patterns of nutrient concentration and export in the tidal Hudson River. Estuaries 22: 285–296.

    CAS  Google Scholar 

  • Lauringson, V., E. Malton, J. Kotta, K. Kangur, H. Orav-Kotta & I. Kotta, 2007. Environmental factors influencing the biodeposition of the suspension feeding bivalve Dreissena polymorpha (Pallas): comparison of brackish and freshwater populations. Estuarine and Coastal Shelf Science 75: 459–467.

    Google Scholar 

  • Leopold, L. B., M. G. Wolman & J. P. Miller, 1964. Fluvial Processes in Geomorphology. W.H. Freeman, San Francisco, CA.

    Google Scholar 

  • Lewis, W. M., 2002. Yield of nitrogen from minimally disturbed watersheds of the United States. Biogeochemistry 57(58): 375–385.

    Google Scholar 

  • Limm, M. P. & M. E. Power, 2011. Effect of the western pearlshell mussel Margaritifera falcata on Pacific lamprey Lampetra tridentata and ecosystem processes. Oikos 120: 1076–1082.

    Google Scholar 

  • Lydeard, C., R. H. Cowie, W. F. Ponder, A. E. Bogan, P. Bouchet, S. A. Clark, K. S. Cummings, T. J. Frest, O. Gargominy, D. G. Herbert, R. Herschler, K. E. Perez, B. Roth, M. Seddon, E. E. Strong & F. G. Thompson. 2004. The global decline of nonmarine mollusks. BioScience 54:321–330.

    Google Scholar 

  • McCall, P. L., M. J. S. Tevesz, X. S. Wang & J. R. Jackson, 1995. Particle mixing rates of freshwater bivalves – Anodonta grandis (Unionidae) and Sphaerium striatinum (Pisidiidae). Journal of Great Lakes Research 21: 333–339.

    Google Scholar 

  • McClain, M. E., E. W. Boyer, C. L. Dent, S. E. Gergel, N. B. Grimm, P. M. Groffman, S. C. Hart, J. W. Harvey, C. A. Johnston, E. Mayorga, W. H. McDowell & G. Pinay, 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6: 301–312.

    CAS  Google Scholar 

  • McIntyre, P. B., A. S. Flecker, M. J. Vanni, J. M. Hood, B. W. Taylor & S. A. Thomas, 2008. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89: 2335–2346.

    PubMed  Google Scholar 

  • Mermillod-Blondin, F., 2011. The functional significance of bioturbation and biodeposition on biogeochemical processes at the water-sediment interface in freshwater and marine ecosystems. Journal of the North American Benthological Society 30: 770–778.

    Google Scholar 

  • Moore, J. W., D. B. Herbst, W. N. Heady & S. M. Carlson. 2012. Stream community and ecosystem responses to the boom and bust of an invading snail. Biological Invasions. doi:10.1007/s10530-012-0240-y.

  • Muller-Navarra, D. C., M. T. Brett, S. Park, S. Chandra, A. P. Ballantyne, E. Zorita & C. R. Goldman, 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427: 69–72.

    PubMed  Google Scholar 

  • Mummert, A. K., R. J. Neves, T. J. Newcomb & D. S. Cherry, 2003. Sensitivity of juvenile freshwater mussels (Lampsilis fasciola, Villosa iris) to total and un-ionized ammonia. Environmental Toxicology and Chemistry 22: 2545–2553.

    CAS  PubMed  Google Scholar 

  • Naimo, T. J., 1995. A review of the effects of heavy metals on fresh-water mussels. Ecotoxicology 4: 341–362.

    CAS  PubMed  Google Scholar 

  • Nalepa, T. F., W. S. Gardner & J. M. Malczyk, 1991. Phosphorus cycling by mussels (Unionidae, Bivalvia) in Lake St. Clair. Hydrobiologia 219: 239–250.

    CAS  Google Scholar 

  • Negus, C. L., 1966. A quantitative study of growth and production of unionid mussels in the River Thames at Reading. Journal of Animal Ecology 35: 513–532.

    Google Scholar 

  • Neves, R. J. (ed.)., 1987. Proceedings of the Workshop on Die-Offs of Freshwater Mussels in the United States. U.S. Fish and Wildlife Service and Upper Mississippi River Conservation Commission.

  • Newton, T. J., 2003. The effects of ammonia on freshwater unionid mussels. Environmental Toxicology and Chemistry 22: 2543–2544.

    CAS  PubMed  Google Scholar 

  • Newton, T. J. & M. R. Bartsch, 2007. Lethal and sublethal effects of ammonia to juvenile Lampsilis mussels (Unionidae) in sediment and water-only exposures. Environmental Toxicology and Chemistry 26: 2057–2065.

    CAS  PubMed  Google Scholar 

  • Pandolfo, T. J., W. G. Cope, C. Arellano, R. B. Bringolf, M. C. Barnhart & E. Hammer, 2010. Upper thermal tolerances of early life stages of freshwater mussels. Journal of the North American Benthological Society 29: 959–969.

    Google Scholar 

  • Patzner, R. A. & D. Müller, 2001. Effects of eutrophication on unionids. In Bauer, G. & K. Wächtler (eds), Ecology and Evolution of the Freshwater Mussels Unionoida. Springer, Berlin: 327–335.

    Google Scholar 

  • Peierls, B. L., N. F. Caraco, M. L. Pace & J. J. Cole, 1991. Human influence on river nitrogen. Nature 350: 386–387.

    Google Scholar 

  • Ploug, H., M. H. Iversen & G. Fischer, 2008. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: implications for substrate turnover by attached bacteria. Limnology and Oceanography 53: 1878–1886.

    Google Scholar 

  • Poff, N. L., J. D. Olden & D. L. Strayer, 2011. Climate change and freshwater extinction risk. In Hannah, L. (ed), Saving a Million Species: Extinction Risk from Climate Change. Island Press, Washington, DC: 309–336.

    Google Scholar 

  • Pynnonen, K., 1991. Accumulation of 45Ca in the freshwater unionids Anodonta anatina and Unio tumidus, as influenced by water hardness, protons, and aluminum. Journal of Experimental Zoology 260: 18–27.

    CAS  Google Scholar 

  • Randall, R. G., J. R. M. Kelso & C. K. Minns, 1995. Fish production in fresh waters: are rivers more productive than lakes? Canadian Journal of Fisheries and Aquatic Sciences 52: 631–643.

    Google Scholar 

  • Ricciardi, A., F. G. Whoriskey & J. B. Rasmussen, 1996. Impact of the Dreissena invasion on native unionid bivalves in the upper St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences 53: 1434–1444.

    Google Scholar 

  • Roditi, H. A., D. L. Strayer & S. E. G. Findlay, 1997. Characteristics of zebra mussel (Dreissena polymorpha) biodeposits in a tidal freshwater estuary. Archiv für Hydrobiologie 140: 207–219.

    CAS  Google Scholar 

  • Sousa, A., A. Novais, R. Costa & D.L. Strayer. 2013. Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia. doi:10.1007/s10750-012-1409-1.

  • Sousa, R., S. Varandas, R. Cortes, A. Teixeira, M. Lopes-Lima, J. Machado & L. Guilhermino, 2012. Massive die-offs of freshwater bivalves as resource pulses. Annales de Limnologie 48: 105–112.

    Google Scholar 

  • Sparks, B. L. & D. L. Strayer, 1998. The effects of low dissolved oxygen on juveniles of Elliptio complanata (Bivalvia: Unionidae). Journal of the North American Benthological Society 17: 129–134.

    Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2006. Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology 51: 1016–1024.

    CAS  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2008. A trait-based approach to species’ roles in stream ecosystems: climate change, community structure, and material cycling. Oecologia: 307–317.

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Strayer, D. L., 1999. Effects of alien species on freshwater mollusks in North America. Journal of the North American Benthological Society 18: 74–98.

    Google Scholar 

  • Strayer, D. L., 2008. Freshwater Mussel Ecology: A Multifactor Approach to Distribution and Abundance. University of California Press, Berkeley, CA: 204 pp.

  • Strayer, D. L. & D. Dudgeon, 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29: 344–358.

    Google Scholar 

  • Strayer, D. L. & H. M. Malcom, 2012. Causes of recruitment failure in freshwater mussel populations in southeastern New York. Ecological Applications 22: 1780–1790.

    PubMed  Google Scholar 

  • Strayer, D. L., D. C. Hunter, L. C. Smith & C. Borg, 1994. Distribution, abundance, and role of freshwater clams (Bivalvia: Unionidae) in the freshwater tidal Hudson River. Freshwater Biology 31: 239–248.

    Google Scholar 

  • Strayer, D. L., J. A. Downing, W. R. Haag, T. L. King, J. B. Layzer, T. J. Newton & S. J. Nichols, 2004. Changing perspectives on pearly mussels, North America’s most imperiled animals. BioScience 54: 429–439.

    Google Scholar 

  • Townsend, C. H., 1902. Statistics of the fisheries of the Mississippi River and tributaries. Report of the United States Fish Commission for 1901: 659–740.

  • Valdovinos, C. & P. Pedreros, 2007. Geographic variations in shell growth rates of the mussel Diplodon chilensis from temperate lakes of Chile: implications for biodiversity conservation. Limnologica 37: 63–75.

    Google Scholar 

  • Vanderploeg, H. A., T. H. Johengen & J. R. Liebig, 2009. Feedback between zebra mussel selective feeding and algal composition affects mussel condition: did the regime changer pay a price for its success? Freshwater Biology 54: 47–63.

    Google Scholar 

  • Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics 33: 341–370.

    Google Scholar 

  • Vanni, M. J., G. Boros & P. B. McIntyre, 2013. When are fish and other animals sources versus sinks of nutrients in ecosystems? Ecology. In revision.

  • Vaughn, C. C., 2010. Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. BioScience 60: 25–35.

    Google Scholar 

  • Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.

    Google Scholar 

  • Vaughn, C. C., K. B. Gido & D. E. Spooner, 2004. Ecosystem processes performed by unionid mussels in stream mesocosms: species roles and effects of abundance. Hydrobiologia 527: 35–47.

    Google Scholar 

  • Vaughn, C. C., D. E. Spooner & H. S. Galbraith, 2007. Context-dependent species identity effects within a functional group of filter-feeding bivalves. Ecology 88: 1654–1662.

    PubMed  Google Scholar 

  • Vaughn, C. C., S. J. Nichols & D. E. Spooner, 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27: 409–423.

    Google Scholar 

  • Vőrősmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    PubMed  Google Scholar 

  • Wacker, A. & E. Von Elert, 2004. Food quality controls egg quality of the zebra mussel Dreissena polymorpha: the role of fatty acids. Limnology and Oceanography 49: 1794–1801.

    CAS  Google Scholar 

  • Walker, K. F., M. Byrne, C. W. Hickey & D. S. Roper, 2001. Freshwater mussels (Hyriidae) of Australasia. In Bauer, G. & K. Wächtler (eds), Ecology and Evolution of the Freshwater Mussels Unionoida. Springer, Berlin: 5–31.

    Google Scholar 

  • Walter, R. C. & D. J. Merritts, 2008a. Natural streams and the legacy of water-powered mills. Science 319: 299–304.

    CAS  PubMed  Google Scholar 

  • Walter, R. C. & D. J. Merritts, 2008b. What to do about those dammed streams – response. Science 321: 911–912.

    CAS  Google Scholar 

  • Wang, F. & P. M. Chapman, 1999. Biological implications of sulfide in sediment – a review focusing on sediment toxicity. Environmental Toxicity and Chemistry 18: 2526–2532.

    CAS  Google Scholar 

  • Wang, N., C. G. Ingersoll, I. E. Greer, D. K. Hardesty, C. D. Ivey, J. L. Kunz, W. G. Brumbaugh, F. J. Dwyer, A. D. Roberts, T. Augspurger, C. M. Kane, R. J. Neves & M. C. Barnhart, 2007. Chronic toxicity of copper and ammonia to juvenile freshwater mussels (Unionidae). Environmental Toxicology and Chemistry 26: 2048–2056.

    CAS  PubMed  Google Scholar 

  • Wang, N., R. J. Erickson, C. G. Ingersoll, C. D. Ivey, E. L. Brunson, T. Augspurger & M. C. Barnhart, 2008. Influence of pH on the acute toxicity of ammonia to juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea). Environmental Toxicology and Chemistry 27: 1141–1146.

    CAS  PubMed  Google Scholar 

  • Watters, G. T., 2000. Freshwater mollusks and water quality: a review of the effects of hydrologic and instream habitat alterations. In Tankersley, R. A., D. I. Warmolts, G. T. Watters, B. J. Armitage, P. D. Johnson & R. S. Butler (eds), Freshwater Mollusk Symposia Proceedings. Ohio Biological Survey, Columbus, OH: 261–274.

    Google Scholar 

  • Watters, G. T., 2008. The morphology of conglutinates and conglutinate-like structures in North American freshwater mussels: a scanning-electron microscopy study. Novapex 9: 1–20.

    Google Scholar 

  • Welker, M. & N. Walz, 1998. Can mussels control the plankton in rivers? – A planktological approach applying a Lagrangian sampling strategy. Limnology and Oceanography 43: 753–762.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, San Diego, CA.

    Google Scholar 

  • Wotton, R. S. & B. Malmqvist, 2001. Feces in aquatic ecosystems. BioScience 51: 537–544.

    Google Scholar 

  • Ziuganov, V., A. Zotin, L. Nezlin & V. Tretiakov, 1994. The Freshwater Pearl Mussels and Their Relationships with Salmonid Fish. VNIRO Publishing House, Moscow: 104 pp.

Download references

Acknowledgments

I thank Manuel Lopes Lima and the organizers of the International Meeting on Biology and Conservation of Freshwater Bivalves for the opportunity to present these ideas; Hudson Valley Fois Gras for funding; Wendell Haag for sharing a helpful unpublished manuscript; Dennis Swaney, Martin Doyle, Jon Cole, and conference participants for discussions and ideas; and the Maria González/Mike Vanni lab group and two anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Strayer.

Additional information

Guest editors: Manuel P. M. Lopes-Lima, Ronaldo G. Sousa, Simone G. P. Varandas, Elsa M. B. Froufe & Amílcar A. T. Teixeira / Biology and Conservation of Freshwater Bivalves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strayer, D.L. Understanding how nutrient cycles and freshwater mussels (Unionoida) affect one another. Hydrobiologia 735, 277–292 (2014). https://doi.org/10.1007/s10750-013-1461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1461-5

Keywords

Navigation