Skip to main content
Log in

Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion

  • LAKE RESTORATION
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In situ estimates of sediment nutrient flux are necessary to understand seasonal variations in internal loading in lakes. We investigated the sources and sinks of nutrients in the hypolimnion of a small (0.33 km2), relatively shallow (18 m max. depth), eutrophic lake (Lake Okaro, New Zealand) in order to determine changes in sediment nutrient fluxes resulting from a whole lake sediment capping trial using a modified zeolite phosphorus inactivation agent (Z2G1). Sediment nutrient fluxes in the hypolimnion were estimated as the residual term in a nutrient budget model that accounted for mineralisation of organic nutrients, nutrient uptake by phytoplankton and mixing, nitrification, adsorption/desorption and diffusion of dissolved nutrients at the thermocline. Of the total hypolimnetic phosphate and ammonium fluxes during one period of seasonal stratification (2007–08), up to 60 and 50%, respectively, were derived from the bottom sediments, 18 and 24% were due to mineralisation of organic species, 36 and 28% were due to phytoplankton uptake and 9 and 6% were from diffusion across the thermocline. Adsorption/desorption of phosphate to suspended solids and nitrification were of minor (<8%) importance to the total fluxes. Any reduction in sediment nutrient release by Z2G1 was small compared with both the total sediment nutrient flux and the sum of other hypolimnetic fluxes. Uneven sediment coverage of Z2G1 may have been responsible for the limited effect of the sediment capping layer formed by Z2G1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, F. O. & P. Ring, 1999. Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake. Hydrobiologia 409: 175–183.

    Article  Google Scholar 

  • Arar, E. J. & G. B. Collins, 1997. Method 445.0, In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence, Revision 1.2. U.S. Environmental Protection Agency, Cincinnati: 22.

    Google Scholar 

  • Auer, M. T., N. A. Johnson, M. R. Penn & S. W. Effler, 1993. Measurements and verification of rates of sediment phosphorus release for a hypereutrophic urban lake. Hydrobiologia 253: 301–309.

    Article  CAS  Google Scholar 

  • Berg, U., T. Neumann, D. Donnert, R. Nüsch & D. Stüben, 2004. Sediment capping in eutrophic lakes – efficacy of undisturbed barriers to immobilize phosphorus. Applied Geochemistry 19: 1759–1771.

    Article  CAS  Google Scholar 

  • Beutel, M. W., 2001. Oxygen consumption and ammonia accumulation in the hypolimnion of Walker Lake, Nevada. Hydrobiologia 466: 107–117.

    Article  CAS  Google Scholar 

  • Burger, D. F., D. P. Hamilton, C. P. Pilditch & M. M. Gibbs, 2007. Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiologia 584: 13–25.

    Article  CAS  Google Scholar 

  • Carignan, R. & D. R. S. Lean, 1991. Regeneration of dissolved substances in a seasonally anoxic lake: the relative importance of processes occurring in the water column and in the sediments. Limnology and Oceanography 43: 683–707.

    Article  Google Scholar 

  • Chapra, S. C. & K. H. Reckhow, 1983. Engineering Approaches for Lake Management, Vol. 2. Mechanistic Modeling. Butterworth Publishers, Boston, MA: 492.

    Google Scholar 

  • Cleveland, W. S., 1979. Robust locally weighted regression and smoothing scatter plots. Journal of the American Statistical Association 74: 828–836.

    Article  Google Scholar 

  • Downes, M., 1988. Aquatic nitrogen transformations at low oxygen concentrations. Applied and Environmental Microbiology 54: 172–175.

    CAS  PubMed  Google Scholar 

  • Ebina, J., T. Tsutsui & T. Shirai, 1983. Simultaneous determination of total nitrogen and total phosphorous in water using peroxodisulphate oxidation. Water Research 17: 1721–1726.

    Article  CAS  Google Scholar 

  • Environment Bay of Plenty, 2006. Lake Okaro Action Plan. ISSN 1175 9372, Environmental Publication 2006/03, Environment Bay of Plenty, Whakatane, New Zealand: 60 p.

  • Förstner, U. & S. E. Apitz, 2007. Sediment Remediation: U.S. focus on capping and monitored natural recovery. Journal of Soils and Sediments 7: 351–358.

    Article  Google Scholar 

  • Forsyth, D. J., S. J. Dryden, M. R. James & W. F. Vincent, 1988. Lake Okaro ecosystem 1. Background limnology. New Zealand Journal of Marine and Freshwater Research 22: 17–28.

    Article  CAS  Google Scholar 

  • Furumai, H. & S. Ohgaki, 1989. Adsorption–desorption of phosphorus by lake sediments under anaerobic conditions. Water Research 23: 677–683.

    Article  CAS  Google Scholar 

  • Gächter, R. & B. Müller, 2003. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnology and Oceanography 48: 929–933.

    Article  Google Scholar 

  • Gal, G., M. R. Hipsey, A. Paparov, U. Wagner, V. Makler & T. Zohary, 2009. Implementation of ecological modelling as an effective management and investigation toll: Lake Kinneret as a case study. Ecological Modelling 220: 1697–1718.

    Article  CAS  Google Scholar 

  • Gibbs, M. M. & D. Özkundakci, 2009. Effects of the P-inactivation agent, Z2G1, on sediment P and N processes and fluxes across the sediment-water interface in Lake Okaro, New Zealand. Hydrobiologia (this issue).

  • Gomez, E., M. Fillit, M. C. Ximenes & B. Picot, 1998. Phosphate mobility at the sediment-water interface of a Mediterranean lagoon (etang du Mejean), seasonal phosphate variation. Hydrobiologia 374: 203–216.

    Article  Google Scholar 

  • Hamilton, D. P. & S. F. Mitchell, 1997. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater Biology 1: 159–168.

    Article  Google Scholar 

  • Hamilton, D. P. & S. G. Schladow, 1997. Prediction of water quality in lakes and reservoirs. Part I – model description. Ecological Modelling 96: 91–110.

    Article  CAS  Google Scholar 

  • Hanaki, K., C. Wantawin & S. Ohgaki, 1990. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Research 24: 297–302.

    Article  CAS  Google Scholar 

  • Hecky, R. E., P. Campbell & L. L. Hendzel, 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnology and Oceanography 38: 709–724.

    Article  CAS  Google Scholar 

  • Hoare, R. A. & R. H. Spigel, 1987. Water balances, mechanics and thermal properties. In Vant, W. N. (ed.), Lake Managers Handbook. DSIR Wellington. Water and Soil Miscellaneous Publication, Vol. 103: 41–45.

  • Holdren, G. C. Jr. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact lake sediment cores. Environmental Science & Technology 1: 79–87.

    Article  Google Scholar 

  • Holmer, M. & P. Storkholm, 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology 46: 431–541.

    Article  CAS  Google Scholar 

  • Hupfer, M. & J. Lewandowski, 2008. Oxygen controls the phosphorus release from lake sediments – a long-lasting paradigm in limnology. International Review of Hydrobiology 93: 415–432.

    Article  CAS  Google Scholar 

  • Imberger, J. & J. C. Patterson, 1990. Physical limnology. Advances in Applied Mechanics 27: 303–475.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeux, S. E. Hampton, S. Hilt, K. L. Kangur, J. K. Hler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. A. R. Miracle, B. Moss, P. N. Ges, G. Persson, G. Phillips, B. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Wille & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Jolly, V. H., 1977. The comparative limnology of some New Zealand lakes. New Zealand Journal of Marine and Freshwater Research 11: 307–340.

    Article  Google Scholar 

  • Kufel, L. & K. Kalinowska, 1997. Metalimnetic gradients and the vertical distribution of phosphorus in a eutrophic lake. Archiv für Hydrobiologie 140: 309–320.

    CAS  Google Scholar 

  • Lewis, W. M. & W. A. Wurtsbaugh, 2008. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. International Review of Hydrobiology 93: 446–465.

    Article  CAS  Google Scholar 

  • Liikanen, A., L. Flöjt & P. Martikainen, 2002. Gas dynamics in eutrophic lake sediments affected by oxygen, nitrate, and sulfate. Journal of Environmental Quality 31: 338–349.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, E. F., 1959. The hot springs and hydrothermal eruptions of Waiotapu. New Zealand Journal of Geology and Geography 2: 141–176.

    CAS  Google Scholar 

  • MacIntyre, S., K. M. Flynn, R. Jellison & J. R. Romero, 1999. Boundary mixing and nutrient fluxes in Mono Lake, California. Limnology and Oceanography 44: 512–529.

    Article  CAS  Google Scholar 

  • McColl, R. H. S., 1972. Chemistry and trophic status of seven New Zealand lakes. New Zealand Journal of Marine and Freshwater Research 6: 399–447.

    Article  CAS  Google Scholar 

  • Morris, D. P. & W. M. Lewis, 1988. Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology 20: 315–327.

    Article  Google Scholar 

  • Mortimer, C. H., 1971. Chemical exchanges between sediments and water in the Great Lakes – speculations on probable regulatory mechanisms. Limnology and Oceanography 16: 387–404.

    Article  CAS  Google Scholar 

  • Nowlin, W. H., J. L. Evarts & M. J. Vanni, 2005. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Freshwater Biology 50: 301–322.

    Article  CAS  Google Scholar 

  • Nürnberg, G. K., 1987. A comparison of internal phosphorus loads in lakes with anoxic hypolimnia: laboratory incubation versus in situ hypolimnetic phosphorus accumulation. Limnology and Oceanography 32: 1160–1164.

    Article  Google Scholar 

  • Nürnberg, G. K., 1988. The prediction of phosphorus release rates from total and reductant-soluble phosphorus in anoxic lake sediments. Canadian Journal of Fisheries and Aquatic Sciences 45: 453–462.

    Article  Google Scholar 

  • Paul, W. J., D. P. Hamilton & M. M. Gibbs, 2008. Low-dose alum application trialled as a management tool for internal nutrient loads in Lake Okaro, New Zealand. New Zealand Journal of Marine and Freshwater Research 42: 207–217.

    Article  CAS  Google Scholar 

  • Pearl, H. W., 2009. Controlling eutrophication along the freshwater-marine continuum: dual nutrient (N and P) reductions are essential. Estuaries and Coasts 32: 593–601.

    Article  Google Scholar 

  • Penn, M. R., M. T. Auer, S. M. Doerr, C. T. Driscoll, C. M. Brooks & S. W. Effler, 2000. Seasonality in phosphorus release rates from the sediments of a hypereutrophic lake under a matrix of pH and redox conditions. Canadian Journal of Fisheries and Aquatic Sciences 57: 1033–1041.

    Article  CAS  Google Scholar 

  • Pettersson, K., 2001. Phosphorus characteristics of settling and suspended particles in Lake Erken. Science of the Total Environment 266: 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, G., R. Jackson, C. Bennett & A. Chilvers, 1994. The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation. Hydrobiologia 275(276): 445–456.

    Article  Google Scholar 

  • Priscu, J. C., R. H. Spigel, M. M. Gibbs & M. T. Downes, 1986. A numerical analysis of hypolimnetic nitrogen and phosphorus transformations in Lake Rotoiti, New Zealand: a geothermally influenced lake. Limnology and Oceanography 31: 812–831.

    Article  CAS  Google Scholar 

  • Reitzel, K., J. Ahlgren, H. DeBrabandere, M. Walbebäck, A. Gogoll, L. Tranvik & E. Rydin, 2007. Degradation rates of organic phosphorus in lake sediment. Biogeochemistry 82: 15–28.

    Article  CAS  Google Scholar 

  • Robb, M., B. Greenop, Z. Goss, G. Douglas & J. A. Adeney, 2003. Application of PhoslockTM, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings. Hydrobiologia 494: 237–243.

    Article  CAS  Google Scholar 

  • Robson, B. J. & D. P. Hamilton, 2004. Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia. Ecological Modelling 174: 203–222.

    Article  CAS  Google Scholar 

  • Roden, E. E. & J. W. Edmonds, 1997. Phosphate mobilisation in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Archiv für Hydrobiologie 139: 347–378.

    CAS  Google Scholar 

  • Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasian, 2008. Eutrophication of lakes cannot be controlled by reduction of nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254–11258.

    Google Scholar 

  • Sherman, B. S., I. T. Webster, G. T. Jones & R. L. Oliver, 1998. Transitions between Aulacoseira and Anabaena dominance in a turbid river weir pool. Limnology and Oceanography 43: 1902–1915.

    CAS  Google Scholar 

  • Sinke, A. J. C., A. A. Cornelese, P. Keizer, O. F. R. van Tongeren & T. E. Cappenberg, 1990. Mineralisation, pore water chemistry and phosphorus release from peaty sediments in the eutrophic Loosdrecht lakes, the Netherlands. Freshwater Biology 3: 587–599.

    Article  Google Scholar 

  • Smolders, A. J. P., L. P. M. Lamers, E. C. H. E. T. Lucasseu, G. van der Velde & J. G. M. Roelops, 2006. Internal eutrophication: how it works and what to do about it – a review. Journal of Chemical Ecology 22: 93–111.

    CAS  Google Scholar 

  • Søndergaard, M., J. Windolf & E. Jeppesen, 1996. Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry. Water Research 30: 992–1002.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen & J. P. Jensen, 2000. Hypolimnetic nitrate treatment to reduce internal phosphorus loading in a stratified lake. Lake and Reservoir Management 16: 195–204.

    Article  Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003a. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506: 135–145.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen & J. P. Jensen, 2003b. Internal phosphorus loading and the resilience of Danish lakes. Lake Line 23: 17–20.

    Google Scholar 

  • Spears, B. M., L. Carvalho & D. M. Paterson, 2007. Phosphorus partitioning in a shallow lake: implications for water quality management. Water and Environment Journal 21: 47–53.

    Article  CAS  Google Scholar 

  • Tanner, C. C., K. Caldwell, D. Ray & J. McIntosh, 2007. Constructing wetland to treat nutrient-rich inflow to Lake Okaro, Rotorua. In: Proceedings of Stormwater 2007: 5th South Pacific Stormwater Conference, 16–18 May, Auckland, New Zealand.

  • Vant, W. N. & R. J. Davies-Colley, 1986. Relative importance of clarity determinants in Lakes Okaro and Rotorua. New Zealand Journal of Marine and Freshwater Research 20: 355–363.

    Article  Google Scholar 

  • Vopel, K., M. Gibbs, C. W. Hickey & J. Quinn, 2008. Modification of sediment-water solute exchange by sediment-capping agents: effects on O2 and pH. Marine and Freshwater Research 59: 1101–1110.

    Article  CAS  Google Scholar 

  • Wauer, G., T. Gonsiorczyk, K. Kretschmer, P. Casper & R. Koschel, 2005. Sediment treatment with a nitrate-storing compound to reduce phosphorus release. Water Research 39: 494–500.

    Article  CAS  PubMed  Google Scholar 

  • Welch, E. B. & G. D. Cooke, 1999. Effectiveness and longevity of phosphorus inactivation with alum. Lake and Reservoir Management 15: 5–27.

    Article  CAS  Google Scholar 

  • Yamada, H., M. Kayama, K. Saito & M. Hara, 1987. Suppression of phosphate liberation from sediment by using iron slag. Water Research 21: 325–333.

    Article  CAS  Google Scholar 

  • Yeates, P. S. & J. Imberger, 2003. Pseudo two-dimensional simulations of internal and boundary fluxes in stratifies lakes and reservoirs. International Journal of River Basin Management 1: 297–319.

    Article  Google Scholar 

Download references

Acknowledgements

The first author was funded with a Ph.D. scholarship within the Lake Biodiversity Restoration program funded by the N.Z. Foundation of Research, Science and Technology (Contract UOWX 0505). We thank Dennis Trolle for assistance with the modelling and Michael Landman for helpful comments on an earlier manuscript draft. We gratefully acknowledge Environment Bay of Plenty and Scion (Rotorua) for additional funding. We are grateful to the two anonymous referees whose comments greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Özkundakci.

Additional information

Guest editors: D. P. Hamilton, M. J. Landman / Lake Restoration: An Experimental Ecosystem Approach for Eutrophication Control

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özkundakci, D., Hamilton, D.P. & Gibbs, M.M. Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion. Hydrobiologia 661, 5–20 (2011). https://doi.org/10.1007/s10750-010-0358-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0358-9

Keywords

Navigation