Skip to main content
Log in

Quantification of sediment reworking by the Asiatic clam Corbicula fluminea Müller, 1774

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Active organisms modify the substratum in which they dwell. This process, called “bioturbation”, affects the way that biogeochemical fluxes are mediated at the substratum–water interface. In the frame of this work, the bioturbation potential of the Asiatic clam Corbicula fluminea was characterized and quantified. We measured the displacement of fluorescent particles by C. fluminea burying in a size-based experimental design in order to explore the effects of body-size on sediment reworking. Our results stress that C. fluminea belongs to the functional group of biodiffusors, and that C. fluminea can be considered as an intermediate sediment reworker. We suggest that bioturbation was mainly induced by the pedal-feeding activity of the clams. Results also showed that, though large clams induced displacement of particles deeper into the sediment, small clams showed the highest net sediment reworking activity. This result was in contrast to the initial hypothesis of biovolume as the main driver for particle displacement by bioturbating organisms. Life-history traits and specific features of pedal-feeding could explain the observed pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aller, R. C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In McCall, P. L. & M. J. S. Tevesz (eds), Animal–sediment relations – the biogenic alteration of sediments. Plenum Press, New York: 53–102.

    Chapter  Google Scholar 

  • Boltovskoy, D., I. Izaguirre & N. Correa, 1995. Feeding selectivity of Corbicula fluminea (Bivalvia) on natural phytoplankton. Hydrobiologia 312: 171–182.

    Article  Google Scholar 

  • Boudreau, B. P., 1986. Mathematics of tracer mixing in sediments: I. Spatially-dependent, diffusive mixing. American Journal of Science 286: 161–198.

    Article  Google Scholar 

  • Cataldo, D. & D. Boltovskoy, 1998. Population dynamics of Corbicula fluminea (Bivalvia) in the Paraña river delta (Argentina). Hydrobiologia 380: 153–163.

    Article  Google Scholar 

  • Ciutat, A., M. Gerino, N. Mesmer-Dudons, P. Anschutz & A. Boudou, 2005. Cadmium bioaccumulation in Tubificidae from the overlying water source and effects on bioturbation. Ecotoxicology and Environmental Safety 60: 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, R. R. H., P. V. Dresler, E. J. P. Phillips & R. L. Cory, 1984. The effect of the Asiatic clam, Corbicula fluminea, on phytoplankton of the Potomac River, Maryland. Limnology and Oceanography 29: 170–180.

    Article  Google Scholar 

  • Dame, R. F., 1996. Ecology of marine bivalves: an ecosystem approach. CRS Press, New York.

    Book  Google Scholar 

  • Dorgan, K. M., P. A. Jumars, B. Johnson, B. P. Boudreau & E. Landis, 2005. Burrowing mechanics: burrow extension by crack propagation. Nature 433: 475.

    Article  CAS  PubMed  Google Scholar 

  • Filgeira, R., U. Labarta & M. J. Fernández-Reiriz, 2008. Effect of condition index on allometric relationships of clearance rate in Mytilus galloprovincialis. Revista de Biología Marina y Oceanografía 43: 391–398.

    Google Scholar 

  • Fisher, J. B., W. J. Lick, P. L. McCall & J. A. Robbins, 1980. Vertical mixing of lake sediments by tubificid oligochaetes. Journal of Geophysical Research 85: 3997–4006.

    Article  Google Scholar 

  • François, F., K. Dalègre, F. Gilbert & G. Stora, 1999. Specific variability within functional groups. Study of the sediment reworking of two Veneridae bivalves, Ruditapes decussatus and Venerupis aurea. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie 322: 339–345.

    Article  Google Scholar 

  • François, F., J. C. Poggiale, J. P. Durbec & G. Stora, 2001. A new model of bioturbation for a functional approach to sediment reworking resulting from macrobenthic communities. In Aller, J. Y., S. A. Woodin & R. C. Aller (eds), Organism–sediment interactions. University of South Carolina Press, Columbia: 73–86.

    Google Scholar 

  • Gilbert, F., S. Hulth, V. Grossi, J. Poggiale, G. Desrosiers, R. Rosenberg, M. Gérino, F. François-Carcaillet, E. Michaud & G. Stora, 2007. Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): importance of faunal biovolume. Journal of Experimental Marine Biology and Ecology 348: 133–144.

    Article  Google Scholar 

  • Guinasso, N. L. & D. R. Schink, 1975. Quantitative estimates of biological mixing rates in abyssal sediments. Journal of Geophysical Research 80: 3032–3043.

    Article  Google Scholar 

  • Gutiérrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribarne, 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.

    Article  Google Scholar 

  • Hakenkamp, C. C. & M. A. Palmer, 1999. Introduced bivalves in freshwater ecosystems: the impact of Corbicula on organic matter dynamics in a sandy stream. Oecologia 119: 445–451.

    Article  Google Scholar 

  • Hakenkamp, C. C., S. G. Ribblett, M. A. Palmer, C. M. Swan, J. W. Reid & M. R. Goodison, 2001. The impact of an introduced bivalve (Corbicula fluminea) on the benthos of a sandy stream. Freshwater Biology 46: 491–501.

    Article  Google Scholar 

  • Hedman, J. E., J. S. Gunnarsson, G. Samuelsson & F. Gilbert, 2011. Particle reworking and solute transport by the sediment-living polychaetes Marenzelleria neglecta and Hediste diversicolor. Journal of Experimental Marine Biology and Ecology 407: 294–301.

    Article  CAS  Google Scholar 

  • Kristensen, E., G. Penha-Lopes, M. Delefosse, T. B. Valdemarsen, C. O. Quintana & G. T. Banta, 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446: 285–302.

    Article  Google Scholar 

  • Lagauzère, S., L. Pischedda, P. Cuny, F. Gilbert, G. Stora & J. M. Bonzom, 2009. Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination. Environmental Pollution 157: 1234–1242.

    Article  PubMed  Google Scholar 

  • Lagauzère, S., F. Coppin, M. Gérino, S. Delmotte, G. Stora & J. M. Bonzom, 2011. An alternative method of particulate fluorescent tracer analysis in sediments using a microplate fluorimeter. Environmental Technology 32: 551–560.

    Article  PubMed  Google Scholar 

  • Lauritsen, D. D., 1986. Filter-feeding in Corbicula fluminea and its effect on seston removal. Journal of the North American Benthological Society 5: 165–172.

    Article  Google Scholar 

  • Lauritsen, D. D. & S. C. Mozley, 1989. Nutrient excretion by the Asiatic clam Corbicula fluminea. Journal of the North American Benthological Society 8: 134–139.

    Article  Google Scholar 

  • Lucy, F. E., A. Y. Karatayev & E. B. Lyubov, 2012. Predictions for the spread, population density, and impacts of Corbicula fluminea in Ireland. Aquatic Invasions 7: 465–474.

    Article  Google Scholar 

  • Maire, O., J. C. Duchène, R. Rosenberg, J. B. de Mendonca & A. Grémare, 2006. Effects of food availability on sediment reworking in Abra ovata and A. nitida. Marine Ecology Progress Series 319: 135–153.

    Article  Google Scholar 

  • Maire, O., J. C. Duchène, A. Grémare, V. S. Malyuga & F. J. R. Meysman, 2007. A comparison of sediment reworking rates by the surface deposit-feeding bivalve Abra ovata during summertime and wintertime, with a comparison between two models of sediment reworking. Journal of Experimental Marine Biology and Ecology 343: 21–36.

    Article  Google Scholar 

  • Matisoff, G. & W. Xiaosong, 1998. Solute transport in sediments by freshwater infaunal bioirrigators. Limnology and Oceanography 43: 1487–1499.

    Article  CAS  Google Scholar 

  • McCall, P. L., M. J. S. Tevesz, X. Wang & J. R. Jackson, 1995. Particle mixing rates of freshwater bivalves: Anodonta grandis (Unionidae) and Sphaerium striatinum (Pisidiidae). Journal of Great Lakes Research 21: 333–339.

    Article  Google Scholar 

  • McMahon, R. F., 2000. Invasive characteristics of the freshwater bivalve Corbicula fluminea. In Claudi, R. & J. Leach (eds), Nonindigenous freshwater organisms: vectors, biology and impacts. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Mermillod-Blondin, F., R. Rosenberg, F. François, K. Norling & L. Mauclaire, 2004. Influence of bioturbation by three benthic species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36: 271–284.

    Article  Google Scholar 

  • Mermillod-Blondin, F., A. Foulquier, F. Gilbert, S. Navel, B. Montuelle, F. Bellvert, G. Comte, V. Grossi, F. Fourel, C. Lecuyer & L. Simon, 2013. Benzo (a) pyrene inhibits the role of the bioturbator Tubifex tubifex in river sediment biogeochemistry. Science of the Total Environment 450: 230–241.

    Article  PubMed  Google Scholar 

  • Meysman, F. J. R., J. J. Middelburg & C. H. R. Heip, 2006. Bioturbation: a fresh look at Darwin’s last idea. Trends in Ecology & Evolution 21: 688–695.

    Article  Google Scholar 

  • Michaud, E., G. Desrosiers, F. Mermillod-Blondin, B. Sundby & G. Stora, 2005. The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. Journal of Experimental Marine Biology and Ecology 326: 77–88.

    Article  CAS  Google Scholar 

  • Ouellette, D., G. Desrosiers, J. P. Gagne, F. Gilbert, J. C. Poggiale, P. U. Blier & G. Stora, 2004. Effects of temperature on in vitro sediment reworking processes by a gallery biodiffusor, the polychaete Neanthes virens. Marine Ecology Progress Series 266: 185–193.

    Article  Google Scholar 

  • Persoone, G., 1971. A simple volumeter for small invertebrates. Helgoländer Wissenschaftliche Meeresuntersuchungen 22: 141–143.

    Article  Google Scholar 

  • R Development Core Team, 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://R-project.org.

  • Raikow, D. F. & S. K. Hamilton, 2001. Bivalve diets in a midwestern US stream: a stable isotope enrichment study. Limnology and Oceanography 46: 514–522.

    Article  Google Scholar 

  • Reid, R. G. B., R. F. McMahon, D. O. Foighil & R. Finnigan, 1992. Anterior inhalant currents and pedal feeding in bivalves. The Veliger 35: 93–104.

    Google Scholar 

  • Rhoads, D. C., 1963. Rates of sediment reworking by Yoldia limatula in Buzzards Bay, Massachusetts, and Long Island Sound. Journal of Sedimentary Research 33: 723–727.

    Google Scholar 

  • Riisgård, H. U., 1988. Efficiency of particle retention and filtration rate in 6 species of Northeast American bivalves. Marine Ecology Progress Series 45: 217–223.

    Article  Google Scholar 

  • Saloom, M. E. & R. Scot Duncan, 2005. Low dissolved oxygen levels reduce anti-predation behaviours of the freshwater clam Corbicula fluminea. Freshwater Biology 50: 1233–1238.

    Article  Google Scholar 

  • Schumacher, B. A., 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. United States Environmental Protection Agency Report (NCEAC-1182, EMASC-001): 25.

  • Solan, M., B. J. Cardinale, A. L. Downing, K. A. M. Engelhardt, J. L. Ruesink & D. S. Srivastava, 2004. Extinction and ecosystem function in the marine benthos. Science 306: 1177–1180.

    Article  CAS  PubMed  Google Scholar 

  • Sousa, R., C. Antunes & L. Guilhermino, 2008. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Annales de Limnologie – International Journal of Limnology 44: 85–94.

    Article  Google Scholar 

  • Sousa, R., J. L. Gutiérrez & D. C. Aldridge, 2009. Non-indigenous invasive bivalves as ecosystem engineers. Biological Invasions 11: 2367–2385.

    Article  Google Scholar 

  • Stites, D. L., A. C. Benke & D. M. Gillespie, 1995. Population dynamics, growth, and production of the Asiatic clam, Corbicula fluminea, in a blackwater river. Canadian Journal of Fisheries and Aquatic Sciences 52: 425–437.

    Article  Google Scholar 

  • Strayer, D. L., 1999. Effects of alien species on freshwater mollusks in North America. Journal of the North American Benthological Society 18: 74–98.

    Article  Google Scholar 

  • Strayer, D. L. & H. M. Malcom, 2007. Effects of zebra mussels (Dreissena polymorpha) on native bivalves: the beginning of the end or the end of the beginning? Journal of the North American Benthological Society 26: 111–122.

    Article  Google Scholar 

  • Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.

    Article  Google Scholar 

  • Welch, K. J. & J. E. Joy, 1984. Growth rates of the asiatic clam, Corbicula fluminea (Müller), in the Kanawha River, West Virginia. Freshwater Invertebrate Biology 3: 139–142.

    Article  Google Scholar 

  • Werner, S. & K.-O. Rothhaupt, 2007. Effects of the invasive bivalve Corbicula fluminea on settling juveniles and other benthic taxa. Journal of the North American Benthological Society 26: 673–680.

    Article  Google Scholar 

  • Wheatcroft, R. A., P. A. Jumars, C. R. Smith & A. R. M. Nowell, 1990. A mechanistic view of the particulate biodiffusion coefficient: step lengths, rest periods and transport directions. Journal of Marine Research 48: 177–207.

    Article  Google Scholar 

  • Yeager, M. M., D. S. Cherry & R. J. Neves, 1994. Feeding and burrowing behaviors of juvenile rainbow mussels, Villosa iris (Bivalvia: Unionidae). Journal of the North American Benthological Society 13: 217–222.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Régis Cereghino who indicated us some Corbicula “hot spots” and to Frédérique François-Carcaillet, Stefan Hulth, John E. Havel, and two referees for helpful comments on an earlier draft. This research was supported by an ATER assistant-professor fellowship (University Paul Sabatier) to NM. Nereis Park contribution #30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Majdi.

Additional information

Handling editor: John Havel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majdi, N., Bardon, L. & Gilbert, F. Quantification of sediment reworking by the Asiatic clam Corbicula fluminea Müller, 1774. Hydrobiologia 732, 85–92 (2014). https://doi.org/10.1007/s10750-014-1849-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1849-x

Keywords

Navigation