Skip to main content

The Effects of Macrobenthos on Chemical Properties of Marine Sediment and Overlying Water

  • Chapter
Animal-Sediment Relations

Part of the book series: Topics in Geobiology ((TGBI,volume 100))

Abstract

The composition of any environment or object is determined by a particular balance between material transport processes and chemical reactions within and around it. In the case of marine sedimentary deposits, the dominant agents of mass transport are often large bottom-dwelling animals that move particles and fluids during feeding, burrowing, tube construction, and irrigation. Such biogenic material transport has major direct and indirect effects on the composition of sediments and their overlying waters. In this chapter I review some of what is presently known about these effects, their implications for both chemical and biological properties of a deposit, and how they can be conceptualized in quantitative models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R. C., 1978, Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry, Am. J. Sci. 278: 1185–1234.

    Google Scholar 

  • Aller, R. C., 1980a, Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment, Geochim. Cosmochim. Acta 44: 1955–1965.

    Google Scholar 

  • Aller, R. C., 1980b, Relationships of tube-dwelling benthos with sediment and overlying water chemistry, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 285–308, University of South Carolina Press, Columbia.

    Google Scholar 

  • Aller, R. C., 1980c, Diagenetic processes near the sediment—water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S, N, P), Adv. Geophys. 22: 237–350.

    Google Scholar 

  • Aller, R. C., 1982, Carbonate dissolution in shallow water marine sediments: Role of physical and biological reworking, J. Geol. 90: 79–95.

    Google Scholar 

  • Aller, R. C., and Cochran, J. K., 1976, 234Th/238U disequilibrium in near-shore sediment: Particle reworking and diagenetic time scales, Earth Planet. Sci. Lett. 29:37–50.

    Google Scholar 

  • Aller, R. C., and Dodge, R. E., 1974, Animal—sediment relations in a tropical lagoon, Discovery Bay, Jamaica, J. Mar. Res. 32: 209–232.

    Google Scholar 

  • Aller, R. C., and Yingst, J. Y., 1978, Biogeochemistry of tube-dwellings: A study of the sedentrary polychaete Amphitrite ornata (Leidy), J. Mar. Res. 36: 201–254.

    Google Scholar 

  • Aller, R. C., Benninger, L. K., and Cochran, J. K., 1980, Tracking particle associated processes in nearshore environments by use of 234Th/238U disequilibrium, Earth Planet. Sci. Lett. 47: 161–175.

    Google Scholar 

  • Anderson, J. G., and Meadows, P. S., 1978, Microenvironments in marine sediments, Proc. R. Soc. Edinburgh Sect. B 76: 1–16.

    Google Scholar 

  • Amiard-Triquet, C., 1974, Etude experimentale de la contamination par le cerium 144 et le fer 59 d’un sédiment à Arenicola marina L. (Annelida Polychete), Cah. Biol. Mar. 15: 483–494.

    Google Scholar 

  • Aston, S. R., and Chester, R., 1973, The influence of suspended particles on the precipitation of iron in natural waters, Estuarine Coastal Mar. Sci. 1: 225–231.

    Google Scholar 

  • Baas-Beckling, L. G. M., Kaplan, I. R., and Moore, D., 1960, Limits of the natural environment in terms of pH and oxidation—reduction potentials, J. Geol. 68: 243–284.

    Google Scholar 

  • Bambach, R. K., and Sepkoski, J. J., Jr., 1979, The increasing influence of biologic activity on sedimentary stratification through the Phanerozoic, Geol. Soc. Am. 11: 383.

    Google Scholar 

  • Baumfalk, Y. A., 1979, Heterogeneous grain size distribution in tidal flat sediment caused by bioturbation activity of Arenicola marina (Polychaeta), Neth. J. Sea Res. 13: 428–440.

    Google Scholar 

  • Bell, S. S., Watzin, M. C., and Coull, B. C., 1978, Biogenic structure and its effect on the spatial heterogeneity of meiofauna in a salt marsh, J. Exp. Mar. Biol. Ecol. 35: 99–107.

    Google Scholar 

  • Benninger, L. K., Aller, R. C., Cochran, J. K., and Turekian, K. K., 1979, Effects of biological sediment mixing on the 270Pb chronology and trace metal distribution in a Long Island Sound sediment core, Earth Planet. Sci. Lett. 43: 241–259.

    Google Scholar 

  • Ben-Yaakov, S., 1973, pH buffering of pore water of recent anoxic marine sediments, Limnol. Oceanogr. 18: 86–94.

    Google Scholar 

  • Berner, R. A., 1974, Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus and silicon in anoxic marine sediments, in: The Sea ( E. D. Goldberg, ed.), Volume 5, pp. 427–450, John Wiley and Sons, New York.

    Google Scholar 

  • Berner, R. A., 1976a, The benthic boundary layer from the viewpoint of a geochemist, in: The Benthic Boundary Layer (I. N. McCave, ed.), pp. 33–55, Plenum Press, New York. Berner, R. A., 1976b, Inclusion of adsorption in the modelling of early diagenesis, Earth Planet. Sci. Lett. 29: 333–340.

    Google Scholar 

  • Berner, R. A., 1980, Early Diagenesis—A Theoretical Approach, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Berner, R. A., 1981, A rate model for organic matter decomposition during bacterial sulfate reduction in marine sediments, Colloq. Int. C.N.R.S. 293: 35–44.

    Google Scholar 

  • Billen, G., 1978, A budget of nitrogen recycling in North Sea sediments off the Belgian coast, Estuarine Coastal Mar. Sci. 7: 127–146.

    Google Scholar 

  • Brenchley, G. A., 1978, On the regulation of marine infaunal assemblages at the morphological level: A study of the interactions between sediment stabilizers, destabilizers, and their sedimentary environment, Ph.D. dissertation, Johns Hopkins University, Baltimore, Maryland.

    Google Scholar 

  • Cadée, G. C., 1976, Sediment reworking by Arenicola marina on tidal flats in the Dutch Wadden Sea, Neth. J. Sea Res. 10: 440–460.

    Google Scholar 

  • Carpenter, R., Peterson, M. L., and Bennett, J. T., 1982, 210Pb-derived sediment accumulation and mixing rates for the Washington continental slope, Mar. Geol. 48: (in press).

    Google Scholar 

  • Claypool, G. E., and Kaplan, I. R., 1974, The origin and distribution of methane in marine sediments, in: Natural Gases in Marine Sediments ( I. R. Kaplan, ed.), pp. 99–139, Plenum Press, New York.

    Google Scholar 

  • Cochran, J. K., and Aller, R. C., 1979, Particle reworking in sediments from the New York Right Apex: Evidence from 234Th/238U disequilibrium, Estuarine Coastal Mar. Sci. 9: 739–747.

    Google Scholar 

  • Coyer, P. E., and Mangum, C. P., 1973, Effect of temperature on active and resting metabolism in polychaetes, in: Effects of Temperature on Ectothermic Organisms ( W. Wieser, ed.), pp. 173–180, Springer-Verlag, New York.

    Google Scholar 

  • Cullen, D. J., 1973, Bioturbation of superficial marine sediments by interstitial meiobenthos, Nature 242: 323–324.

    Google Scholar 

  • Dapples, E. C., 1942, The effect of macro-organisms upon near-shore marine sediments, J. Sediment. Petrol. 12: 118–126.

    Google Scholar 

  • DeMaster, D. J., Nittrouer, C. A., Cutshall, N. H., Larsen, I. L., and Dion, E. P., 1980, Short lived radionuclide profiles and inventories from Amazon continental shelf sediments, Eos 61: 1004.

    Google Scholar 

  • Eager, E. W., 1964, Marine sediments: Effects of a tube-building polychaete, Science 143: 356–359.

    Google Scholar 

  • Fenchel, T., 1970, Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum, Limnol. Oceanogr. 15: 14–20.

    Google Scholar 

  • Fenchel, T., and Harrison, P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), Proc. Symp. Br. Ecol. Soc. 17: 285–299.

    Google Scholar 

  • Fenchel, T., Kofoed, L. H., and Lappalainen, A., 1975, Particle size-selection of two deposit feeders: The amphipod Corophium volutator and the prosobranch Hydrobia ulval, Mar. Biol. 30: 119–128.

    Google Scholar 

  • Filipek, L. H., and Owen, R. M., 1980, Early diagenesis of organic carbon and sulfur in outer shelf sediments from the Gulf of Mexico, Am. J. Sci. 280: 1097–1112.

    Google Scholar 

  • Fisher, J. B., Lick, W. J., McCall, P. L., and Robbins, J. A., 1980, Vertical mixing of lake sediments by tubificid oligochaetes, J. Geophys. Res. 85: 3997–4006.

    Google Scholar 

  • Foster-Smith, R. L., 1978, An analysis of water flow in tube-living animals, J. Exp. Mar. Biol. Ecol. 34: 73–95.

    Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Soboxic diagenesis, Geochim. Cosmochim. Acta 43: 1075–1091.

    Google Scholar 

  • Goldberg, E. D., and Koide, M., 1962, Geochronological studies of deep sea sediments by the ionium/thorium method, Geochim. Cosmochim. Acta 26: 417–450.

    Google Scholar 

  • Goldhaber, M. B., and Kaplan, I. R., 1974, The sulfur cycle, in: The Sea ( E. D. Goldberg, ed.), Volume 5, pp. 569–655, John Wiley and Sons, New York.

    Google Scholar 

  • Goldhaber, M. B., Aller, R. C., Cochran, J. K., Rosenfeld, J. K., Martens, C. S., and Berner, R. A., 1977, Sulfate reduction diffusion and bioturbation in Long Island Sound sediments: Report of the FOAM group, Am. J. Sci. 277: 193–237.

    Google Scholar 

  • Grassle, J. F., and Grassle, J. P., 1974, Opportunistic life histories and genetic systems in marine benthic polychaetes, J. Mar. Res. 32: 253–284.

    Google Scholar 

  • Greenwood, D. J., 1968, Measurement of microbial metabolism in soil, in: The Ecology of Soil Bacteria ( T. R. G. Gray and D. Parkinson, eds.), pp. 138–157, University of Toronto Press, Toronto.

    Google Scholar 

  • Grill, E. V., and Richards, R. A., 1964, Nutrient regeneration from phytoplankton decomposing in sea water, J. Mar. Res. 22: 51–69.

    Google Scholar 

  • Grundmanis, V., and Murray, J. W., 1977, Nitrification and denitrification in marine sediments from Puget Sound, Limnol. Oceanogr. 22: 804–813.

    Google Scholar 

  • Guinasso, N. L., Jr., and Schink, D. R., 1975, Quantitative estimates of biological mixing rates in abyssal sediments, J. Geophys. Res. 80: 3032–3043.

    Google Scholar 

  • Hammond, D. E., and Fuller, C., 1979, The use of radon-222 as a tracer in San Francisco Bay, in: San Francisco Bay: The Urbanized Estuary ( T. J. Conomos, ed.), pp. 213–230, American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Hammond, D. E., Simpson, H. J., and Mathieu, G., 1975, Methane and radon-222 as tracers for mechanisms of exchange across the sediment—water interface in the Hudson River Estuary, in: Marine Chemistry in the Coastal Environment (T. M. Church, ed.), ACS Symposium Series 18, pp. 119–132, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Hammond, L. S., 1981, An analysis of grain size modification in biogenic carbonate sediments by deposit-feeding holothurians and echinoids (Echinodermata), Limnol. Oceanogr. 26: 898–906.

    Google Scholar 

  • Hanor, J. S., and Marshall, N. T., 1971, Mixing of sediment by organisms, in: Trace Fossils (B. F. Perkins, ed.), Louisiana State University Miscellaneous Publication 71–1, pp. 127–136, Louisiana State University Press, Baton Rouge.

    Google Scholar 

  • Hargrave, B. T., 1970, The effect of a deposit-feeding amphipod on the metabolism of benthic microflora, Limnol. Oceanogr. 15: 21–30.

    Google Scholar 

  • Hargrave, B. T., 1972, Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content, Limnol. Oceanogr. 17: 583–596.

    Google Scholar 

  • Hargrave, B. T., 1976, The central role of invertebrate faeces in sediment decomposition, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), Proc. Symp. Br. Ecol. Soc. 17: 301–321.

    Google Scholar 

  • Hargrave, B. T., and Phillips, G. A., 1977, Oxygen uptake of microbial communities on solid surfaces, in: Aquatic Microbial Communities ( J. Cairns, Jr., ed.), pp. 545–587, Garland, New York.

    Google Scholar 

  • Harrison, P. G., and Mann, K. H., 1975, Detritus formation from eelgrass (Zostera marina L.): The relative effects of fragmentation, leaching, and decay, Limnol. Oceanogr. 20: 924–934.

    Google Scholar 

  • Hoffman, R. J., and Mangum, C. P., 1970, The function of coelomic cell hemoglobin in the polychaete Glycera dibranchiata, Comp. Biochem. Physiol. 36: 211–228.

    Google Scholar 

  • Hurd, D. C., 1973, Interactions of biogenic opal, sediment and seawater in the central equatorial Pacific, Geochim. Cosmochim. Acta 37: 2257–2282.

    Google Scholar 

  • Hylleberg, J., 1975, Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms, Ophelia 14: 113–137.

    Google Scholar 

  • Jones, J. D., 1955, Observations on the respiratory physiology and on the haemoglobin of the polychaete genus Nephthys, with special reference to N. hombergii (Aud. et M. Edw.), J. Exp. Biol. 32: 110–125.

    Google Scholar 

  • Jorgensen, B. B., 1977a, The sulfur cycle of a coastal marine sediment (Linfjorden, Denmark), Limnol. Oceanogr. 22: 814–831.

    Google Scholar 

  • Jorgensen, B. B., 1977b, Bacterial sulfate reduction within reduced microniches of oxidized marine sediments, Mar. Biol. 41: 7–17.

    Google Scholar 

  • Jorgensen, B. B., 1978, A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II. Calculation from mathematical models, Geomicrobial. J. 1: 29–48.

    Google Scholar 

  • Jumars, P. A., Nowell, A. R. M., and Self, R. F. L., 1981, A Markov model of flow—sediment—organism interactions: Model formulation and sensitivity analysis, in: Sedimentary Dynamics of Continental Shelves ( C. A. Nittrouer, ed.), pp. 155–172, Elsevier, Amsterdam.

    Google Scholar 

  • Kamatani, A., and Riley, J. P., 1979, Rate of dissolution of diatom silica walls in seawater, Mar. Biol. 55: 29–35.

    Google Scholar 

  • Khripounoff, A., and Sibuet, M., 1980, La nutrition d’echinodermes abyssaux. I. Alimentation des holothuries, Mar. Biol. 60: 17–26.

    Google Scholar 

  • Korosec, M. A., 1979, The effects of biological activity on transport of dissolved species across the sediment—water interface of San Francisco Bay, M.S. thesis, University of Southern California, Los Angeles.

    Google Scholar 

  • Krishnaswami, S., Benninger, L. K., Aller, R. C., and Van Damm, K. L., 1980, Atmospherically-derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments: Evidence from 7Be, 210Pb, and 239,240Pu, Earth Planet. Sci. Lett. 47: 307–318.

    Google Scholar 

  • Krüger, F., 1959, Zur Ernährungsphysiologie von Arenicola marina L., Zool. Anz. Suppl. 22: 115–120.

    Google Scholar 

  • Lerman, A., 1978, Chemical exchange across sediment—water interface, Annu. Rev. Earth Planet. Sci. 6: 281–303.

    Google Scholar 

  • Lerman, A., 1979, Geochemical Processes: Water and Sediment Environments, John Wiley and Sons, New York.

    Google Scholar 

  • Levinton, J. S., 1980, Particle feeding by deposit feeders: Models, data and a prospectus, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 423–439, University of South Carolina Press, Columbia.

    Google Scholar 

  • Li, Y.-H., and Gregory, S., 1974, Diffusion of ions in sea water and in deep sea sediments, Geochim. Cosmochim. Acta 38: 703–714.

    Google Scholar 

  • Livingston, H. D., and Bowen, V. T., 1979, Pu and 137Cs in coastal sediments, Earth Planet. Sci. Lett. 43: 29–45.

    Google Scholar 

  • Luedtke, N. A., and Bender, M. L., 1979, Tracer study of sediment—water interactions in estuaries, Estuarine Coastal Mar. Sci. 9: 643–651.

    Google Scholar 

  • McCaffrey, R. J., Myers, A. C., Davey, E., Morrison, G., Bender, M., Luedtke, N., Cullen, D., Froelich, P., and Klinkhammer, G., 1980, The relation between pore water chemistry and benthic fluxes of nutrients and manganese in Narragansett Bay, Rhode Island, Limnol. Oceanogr. 25: 31–44.

    Google Scholar 

  • McCall, P. L., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res. 35: 221–266.

    Google Scholar 

  • Mangum, C. P., 1964, Activity patterns in metabolism and ecology of polychaetes, Comp. Biochem. Physiol. 11: 239–256.

    Google Scholar 

  • Mangum, C. P., and Burnett, L. E., 1975, The extraction of oxygen by estuarine invertebrates, in: Physiological Ecology of Estuarine Organisms ( F. J. Vernberg, ed.), pp. 147–163, University of South Carolina Press, Columbia.

    Google Scholar 

  • Mangum, C. P., Santos, S. L., and Rhodes, W. R., Jr., 1968, Distribution and feeding in the onuphid polychaete, Diopatra cuprea (Bosc), Marine Biol. 2: 33–40.

    Google Scholar 

  • Mare, M. F., 1942, A study of a marine benthic community with special reference to the microorganisms, J. Mar. Biol. Assoc. U. K. 25: 517–574.

    Google Scholar 

  • Martens, C. S., and Klump, J. V., 1980, Biogeochemical cycling in an organic-rich coastal marine basin. I. Methane sediment—water exchange processes, Geochim. Cosmochim. Acta 44: 471–490.

    Google Scholar 

  • Myers, A. C., 1977, Sediment processing in a marine subtidal sandy bottom community. I. Physical aspects, J. Mar. Res. 35: 609–632.

    Google Scholar 

  • Noshkin, V. E., and Bowen, V. T., 1973, Concentrations and distributions of long-lived fallout radionuclides in open ocean sediments, in: Radioactive Contamination of the Marine Environment, pp. 671–686, International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Nittrouer, C. A., Sternberg, R. W., Carpenter, R., and Bennett, J. T., 1979, The use of Pb-210 geochronology as a sedimentological tool: Application to the Washington continental shelf, Mar. Geol. 31: 297–316.

    Google Scholar 

  • Nixon, S. W., Kelly, J. R., Fumas, B. N., Oviatt, C. A., and Hale, S. S., 1980, Phosphorus regeneration and the metabolism of coastal marine bottom communities, in: Marine Benthic Dynamics ( K. R. Tenore and B.C. Coull, eds.), pp. 219–242, University of South Carolina Press, Columbia.

    Google Scholar 

  • Okubo, A., 1971, Oceanic diffusion diagrams, Deep Sea Res. 18: 789–802.

    Google Scholar 

  • Olsen, C. R., Simpson, H. J., Ping, T.-H., Bopp, R. F., and Trier, R. M., 1981, Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments, J. Geophys. Res. 86: 11020–11028.

    Google Scholar 

  • Pearson, T. H., and Rosenberg, R., 1978, Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanogr. Mar. Biol. Annu. Rev. 16: 229–311.

    Google Scholar 

  • Peng, T. H., Broecker, W. S., and Berger, W. H., 1979, Rates of benthic mixing in deep-sea sediment as determined by radioactive tracers, Quat. Res. (N.Y.) 11: 141–149.

    Google Scholar 

  • Powell, E. N., 1977, Particle size selection and sediment reworking in a funnel feeder, Leptosynapta tenuis (Holothuroedea, Synaptidae), Int. Rev. Ges. Hydrobiol. 62: 385408.

    Google Scholar 

  • Pryor, W. A., 1975, Biogenic sedimentation and alteration of argillaceous sediments in shallow marine environments, Geol. Soc. Am. Bull. 86: 1244–1254.

    Google Scholar 

  • Redfield, A. C., 1934, On the proportion of organic derivatives in sea water and their relation to the composition of plankton, in: James Johnstone Memorial Volume, pp. 176–192, University Press, Liverpool.

    Google Scholar 

  • Rhoads, D. C., 1974, Organism—sediment relations on the muddy sea floor, Oceanogr. Mar. Biol. Annu. Rev. 12: 263–300.

    Google Scholar 

  • Rhoads, D. C., and Stanley, D. J., 1965, Biogenic graded bedding, J. Sediment. Petrol. 35: 956–963.

    Google Scholar 

  • Rhoads, D. C., Aller, R. C., and Goldhaber, M. B., 1977, The influence of colonizing benthos on physical properties and chemical diagenesis of the estuarine seafloor, in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 113–138, University of South Carolina Press, Columbia.

    Google Scholar 

  • Rhoads, D. C., Yingst, J. Y., and Ullman, W. J., 1978, Seafloor stability in central Long Island Sound. Part I. Temporal changes in erodibility of fine-grained sediment, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 221–244, Academic Press, New York.

    Google Scholar 

  • Richards, F. A., 1965, Anoxic basins and fjords, in: Chemical Oceanography ( J. P. Riley and G. Skirrow, eds.), Volume 1, pp. 611–645, Academic Press, New York.

    Google Scholar 

  • Riedl, R. J., Huang, N., and Machan, R., 1972,-The subtidal pump: A mechanism of interstitial water exchange by wave action, Mar. Biol. 13: 210–221.

    Google Scholar 

  • Rijken, M., 1979, Food and food uptake in Arenicola marina, Neth. J. Sea Res. 13: 406–421.

    Google Scholar 

  • Santschi, P. H., Li, Y.-H., Bell, J. J., Trier, R. M., and Kawtaluk, K., 1980, Pu in coastal marine environments, Earth Planet. Sci. Lett. 51: 248–265.

    Google Scholar 

  • Schäfer, W., 1972, Ecology and Paleoecology of Marine Environments (G. Y. Craig, ed.; I. Oertel, translator), University of Chicago Press, Chicago.

    Google Scholar 

  • Schink, D. R., and Guinasso, N. L., Jr., 1977, Effects of bioturbation on sediment—seawater interaction, Mar. Geol. 23: 133–154.

    Google Scholar 

  • Schink, D. R., and Guinasso, N. L., Jr., 1978, Redistribution of dissolved and adsorbed materials in abyssal marine sediments undergoing biological stirring, Am. J. Sci. 278: 687–702.

    Google Scholar 

  • Schink, D. R., Guinasso, N. L., Jr., and Fanning, K. A., 1975, Processes affecting the concentration of silica at the sediment—water interface of the Atlantic Ocean, J. Geophys. Res. 80: 3013–3031.

    Google Scholar 

  • Self, R. F. L., and Jumars, P. A., 1978, New resource axes for deposit feeders? J. Mar. Res. 36: 627–641.

    Google Scholar 

  • Sepkoski, J. J., Jr., and Bambach, R. K., 1979, The temporal restriction of flat-pebble conglomerates: An example of co-evolution of organisms and sediments, Geol. Soc. Am. Abst. 11: 256.

    Google Scholar 

  • Sholkovitz, E., 1973, Interstitial water chemistry of the Santa Barbara Basin sediments, Geochim. Cosmochim. Acta 37: 2043–2073.

    Google Scholar 

  • Smethie, W. M., Jr., Nittrouer, C. A., and Self, R. F. L., 1981, The use of radon-222 as a tracer of sediment irrigation and mixing on the Washington continental shelf, in: Sedimentary Dynamics of Continental Shelves ( C. A. Nittrouer, ed.), pp. 173–200, Elsevier, Amsterdam.

    Google Scholar 

  • Smith, K. L., Jr., 1978, Benthic community respiration in the N.W. Atlantic Ocean: In situ measurements from 40 to 5200 m., Mar. Biol. 47: 337–347.

    Google Scholar 

  • Sorensen, J., 1978, Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment, Appl. Environ. Microbiol. 35: 301–305.

    Google Scholar 

  • Stumm, W., and Morgan, J. J., 1970, Aquatic Chemistry, John Wiley and Sons, New York.

    Google Scholar 

  • Thayer, C. W., 1979, Biological bulldozers and the evolution of marine benthic communities, Science 203: 458–461.

    Google Scholar 

  • Thistle, D., 1979, Harpacticoid copepods and biogenic structures: Implications for deep-sea diversity maintenance, in: Ecological Processes in Coastal and Marine Systems ( R. J. Livingston, ed.), pp. 217–231, Plenum Press, New York.

    Google Scholar 

  • Thompson, R. K., and Pritchard, A. W., 1969, Respiratory adaptations of two burrowing crustaceans, Callianassa californiensis and Upogebia pugettensis (Decapoda, Thalassinidea), Biol. Bull. 136: 274–287.

    Google Scholar 

  • Thorstenson, D. C., 1970, Equilibrium distribution of small organic molecules in natural waters, Geochim. Cosmochim. Acta 34: 745–770.

    Google Scholar 

  • Turekian, K. K., Cochran, J. K., and DeMaster, D. J., 1978, Bioturbation in deep-sea deposits: Rates and consequences, Oceanus 21: 34–41.

    Google Scholar 

  • Turekian, K. K., Cochran, J. K., Benninger, L. K., and Aller, R. C., 1980, The sources and sinks of nuclides in Long Island Sound, Adv. Geophys. 22: 129–164.

    Google Scholar 

  • Ullman, W. J., and Aller, R. C., 1982, Diffusion coefficients in nearshore marine sediments, Limnol. Oceanogr. 27: 552–556.

    Google Scholar 

  • Vanderborght, J. P., and Billen, G., 1975, Vertical distribution of nitrate in interstitial water of marine sediments with nitrification and denitrification, Limnol. Oceanogr. 20: 953–961.

    Google Scholar 

  • Vanderborght, J. P., Wollast, R., and Billen, G., 1977, Kinetic models of diagenesis in disturbed sediments. I. Mass transfer properties and silica diagenesis, Limnol. Oceanogr. 22: 787–793.

    Google Scholar 

  • van Straaten, L. M. J. U., 1952, Biogene textures and the formation of shell beds in the Dutch Wadden Sea. I—II, Koninkl. Nederl. Akad. Wet. Proc. Ser. B 55: 500–516.

    Google Scholar 

  • Westrich, J., 1983, Ph.D. dissertation, Yale University, New Haven, Connecticut (in preparation).

    Google Scholar 

  • Whitlatch, R. B., 1974, Food-resource partitioning in the deposit-feeding polychaete Pectinaria gouldii, Biol. Bull. 147: 227–235.

    Google Scholar 

  • Yingst, J. Y., and Rhoads, D. C., 1980, The role of bioturbation in the enhancement of microbial turnover rates in marine sediments, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 407–422, University of South Carolina Press, Columbia.

    Google Scholar 

  • Zeitzschel, B., 1980, Sediment—water interactions in nutrient dynamics, in: Marine Benthic Dynamics ( K. R. Tenore and B.C. Coull, eds.), pp. 195–218, University of South Carolina Press, Columbia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aller, R.C. (1982). The Effects of Macrobenthos on Chemical Properties of Marine Sediment and Overlying Water. In: McCall, P.L., Tevesz, M.J.S. (eds) Animal-Sediment Relations. Topics in Geobiology, vol 100. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1317-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1317-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1319-0

  • Online ISBN: 978-1-4757-1317-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics