Skip to main content
Log in

Effects of substrate and shading on the growth of two submerged macrophytes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Excessive nutrient loading may cause a shift from submerged macrophyte dominance to free-floating macrophyte dominance. Tolerance and persistence of submerged plants in response to shade may be key characteristics in determining when/if such a shift occurs in shallow eutrophic lakes. This study examines how the cover of floating macrophyte (Lemna minor) and shade of dark mesh affect the growth and photosynthetic efficiency of two submerged plants (Vallisneria natans and Myriophyllum spicatum) on different nutrient substrates. We found that low- and mid-cover intensities generally enhanced the leaf/shoot growth of both submerged plants under all cover and substrate types. The relative growth rates (RGR) were slightly enhanced under the treatment of Lemna with low- and mid-intensity cover on both nutrient-rich substrates. The leaf/shoot growth and RGR of both submerged macrophytes generally increased more under Lemna cover than mesh cover. The photosynthetic efficiency (F v/F m value) typically increased with the duration of treatment and the cover densities. In addition, these two macrophytes with contrasting growth forms have markedly different growth and survival strategies in response to covers. These results strengthen the hypothesis that submerged plants can successfully develop under a low-intensity cover of floating vegetation on nutrient-rich substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Tawwab, M., 2006. Effect of free-floating macrophyte, Azolla pinnata, on water physico-chemistry, primary productivity and the production of Nile Tilapia, Oreochromis niloticus, L., and common carp, Cyprinus carpio L., in fertilized earthen ponds. Journal of Applied Aquaculture 18: 21–41.

    Article  Google Scholar 

  • Asaeda, T., M. Sultana, J. Manatunge & T. Fujino, 2004. The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L. in two light conditions. Environmental and Experimental Botany 52: 225–238.

    Article  Google Scholar 

  • Barko, J. W. & R. M. Smart, 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 67: 1328–1340.

    Article  CAS  Google Scholar 

  • Bicudo, D. D. E. C., B. M. Fonseca, L. M. Bini, L. O. Crossetti, C. E. Bicudo & T. Araújo-Jesus, 2007. Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshwater Biology 52: 1120–1133.

    Article  Google Scholar 

  • Blanch, S. J., G. G. Ganf & K. F. Walker, 1998. Growth and recruitment in Vallisneria americana as related to average irradiance in the water column. Aquatic Botany 61: 181–205.

    Article  Google Scholar 

  • Boylen, C. W., L. W. Eichler & J. D. Madsen, 1999. Loss of native aquatic plant species in a community dominated by Eurasian watermilfoil. Hydrobiologia 415: 207–211.

    Article  Google Scholar 

  • Caraco, N., J. C. Cole, S. Findlay & C. Wigand, 2006. Vascular plants as engineers of oxygen in aquatic systems. Bioscience 56: 219–225.

    Article  Google Scholar 

  • Carignan, R. & J. Kallf, 1980. Phosphorus sources for aquatic weeds: water or sediment? Science 207: 987–989.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, P. G., E. E. Prepas, M. L. Bothwell & H. R. Hamilton, 1989. Roots versus shoots in nutrient uptake by aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 45: 435–439.

    Article  Google Scholar 

  • Eriksson, P. G. & S. E. B. Weisner, 1997. Nitrogen removal in a wastewater reservoir: the importance of denitrification by epiphytic biofilms on submersed vegetation. Journal of Environmental Quality 26: 905–910.

    Article  CAS  Google Scholar 

  • Feuchtmayr, H., R. Moran, K. Hatton, L. Connor, T. Heyes, B. Moss, I. Harvey & D. Atkinston, 2009. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal of Applied Ecology 46: 713–723.

    Article  Google Scholar 

  • Huang, X. F., W. M. Chen & Q. M. Cai, 1999. Survey, Observation and Analysis of Lake Ecology. Standards Press of China, Beijing.

    Google Scholar 

  • Janes, R. A., J. W. Eaton & K. Hardwick, 1996. The effects of floating mats of Azolla filiculoides Lam. and Lemna minuta Kunth on the growth of submerged macrophytes. Hydrobiologia 340: 23–26.

    Article  Google Scholar 

  • Jiang, J. H., C. F. Zhou, S. Q. An, H. B. Yang, B. H. Guan & Y. Cai, 2008. Sediment type, population density and their combined effect greatly charge the short-time growth of two common submerged macrophytes. Ecological Engineering 34: 79–90.

    Article  Google Scholar 

  • Madsen, T. V. & N. Cedergreen, 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biology 47: 283–291.

    Article  Google Scholar 

  • Meerhoff, M., C. Fosalba, C. Bruzzone, N. Mazzeo, W. Noordoven & E. Jeppesen, 2006. An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology 51: 1320–1330.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. T. E. Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Morris, K., P. C. Bailey, P. I. Boon & L. Hughes, 2003. Alternative stable states in the aquatic vegetation of shallow urban lakes II. Catastrophic loss of aquatic plants consequent to nutrient enrichment. Marine and Freshwater Research 54: 201–215.

    Article  CAS  Google Scholar 

  • Morris, K., K. A. Harrison, P. C. E. Bailey & P. I. Boon, 2004. Domain shifts in the aquatic vegetation of shallow urban lakes: the relative roles of low light and anoxia in the catastrophic loss of the submerged angiosperm Vallisneria americana. Marine and Freshwater Research 55: 749–758.

    Article  Google Scholar 

  • Netten, J. J. C., G. H. P. Arts, R. Gylstra, E. H. Van Nes, M. Scheffer & R. M. M. Roijackers, 2010. Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in mesocosms. Fundamental and Applied Limnology 177: 125–132.

    Article  Google Scholar 

  • Netten, J. J. C., J. van Zuidam, S. Kosten & E. T. H. M. Peeters, 2011. Differential response to climatic variation of free-floating and submerged macrophytes in ditches. Freshwater Biology 56: 1761–1768.

    Article  Google Scholar 

  • O’Farrell, P., P. de Tezanos Pinto, P. L. Rodríguez, G. Chaparro & H. N. Pizarro, 2009. Experimental evidence of the dynamic effect of free-floating plants on phytoplankton ecology. Freshwater Biology 54: 363–375.

    Article  Google Scholar 

  • Ozimek, T., E. Pieczyska & A. Hankiewicz, 1991. Effects of filamentous algae on submerged macrophyte growth: a laboratory experiment. Aquatic Botany 41: 309–315.

    Article  Google Scholar 

  • Parr, L. B., R. G. Perkins & C. F. Mason, 2002. Reduction in photosynthetic efficiency of Cladophora glomerata, induced by overlying canopies of Lemna spp. Water Research 36: 1735–1742.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, G., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4: 103–126.

    Article  Google Scholar 

  • Redondo-Gómez, S., E. Mateos-Naranjo, A. J. Davy, F. Fernández-Muñoz, E. M. Castellanos, T. Luque & F. M. Enrique, 2007. Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Annals of Botany 100: 555–563.

    Article  PubMed  Google Scholar 

  • Sand-Jensen, K., N. L. Pedersen, I. Thorsgaard, B. Moeslund, J. Borum & K. P. Brodersen, 2008. 100 years of vegetation decline and recovery in Lake Fure, Denmark. Journal of Ecology 96: 260–271.

    Article  Google Scholar 

  • Scheffer, M., & E. H. Van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Google Scholar 

  • Scheffer, M., S. Hosper, M. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. Szabó, A. Gragnani, E. H. Van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. The Proceedings of the National Academy of Sciences of United States of America 100: 4040–4045.

    Article  CAS  Google Scholar 

  • Simpson, P. S., J. W. Eaton & K. Hardwick, 1980. The influence of environmental factors on apparent photosynthesis and respiration of the submersed macrophyte Elodea canadensis. Plant, Cell and Environment 3: 415–423.

    CAS  Google Scholar 

  • Simpson, P. S. & J. W. Eaton, 1986. Comparative studies of the photosynthesis of the submerged macrophyte Elodea canadensis and the filamentous algae Cladophora glomerata and Spirogyra sp. Aquatic Botany 24: 1–12.

    Article  Google Scholar 

  • Su, W., G. Zhang, Y. Zhang, H. Xiao & F. Xia, 2004. The photosynthetic characteristics of five submerged aquatic plants. Acta Hydrobiologia Sinica 28: 391–395.

    CAS  Google Scholar 

  • Sultana, M., T. Asaeda, M. E. Azim & T. Fujino, 2010. Morphological responses of a submerged macrophyte to epiphyton. Aquatic Ecology 44: 73–81.

    Article  Google Scholar 

  • Szabo, S., M. Scheffer, R. Roijackers, B. Waluto, M. Braun, P. T. Nagy, G. Borics & L. Zambrano, 2010. Strong growth limitation of a floating plant (Lemna gibba) by the submerged macrophyte (Elodea nuttallii) under laboratory conditions. Freshwater Biology 55: 681–690.

    Article  CAS  Google Scholar 

  • Titus, J. E. & M. S. Adams, 1979. Coexistence and the comparative light relations of the submersed macrophytes Myriophyllum spicatum L., and Vallisneria Americana Michx. Oecologia 40: 273–286.

    Article  Google Scholar 

  • Tobiessen, P. & P. D. Snow, 1984. Temperature and light effects on the growth of Potamogeton crispus in Collins Lake NYS. Canadian Journal of Botany 62: 2822–2826.

    Article  Google Scholar 

  • Xie, Y. H., W. B. Luo, B. Ren & F. Li, 2007. Morphological and physiological responses to sediment type and light availability in roots of the submerged plant Myriophyllum spicatum. Annals of Botany 100: 1517–1523.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (30970469) and the National S&T Major Project (2008ZX07102-005). We thank Diana Chen for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Liu.

Additional information

Handling editor: Sidinei Magela Thomaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Wang, Z., Xing, W. et al. Effects of substrate and shading on the growth of two submerged macrophytes. Hydrobiologia 700, 157–167 (2013). https://doi.org/10.1007/s10750-012-1227-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1227-5

Keywords

Navigation