Skip to main content
Log in

Transition zones in small lakes: the importance of dilution and biological uptake on lake-wide heterogeneity

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Stream inflows are frequently the dominant route for nutrients from catchments to lakes. Studies on large, deep reservoirs and lakes have shown the importance of the fate of inflow plumes for nutrient accessibility to phytoplankton. However, few studies have considered shallow water transition zones between streams and lakes, often a feature of small lakes. This study examined the spatial and temporal dynamics of phosphorus in a shallow stream-lake transition in a small lake to improve our understanding of how phosphorus reaches the pelagic zone. Despite the high discharge levels, and the importance of dilution in explaining observed spatial gradients in soluble reactive phosphorus (SRP), total phosphorus (TP) and chlorophyll a, we found evidence for significant biological uptake of SRP in the inflow embayment during the growing season. This may represent an additional mechanism for the dispersal of phosphorus from the embayment into the lake. The length scale for the transition zone was short (~150 m) which indicated that the direct influence of the inflow on the wider lake was small. However, SRP measurements taken only from the pelagic site underestimated mean lake-wide concentrations when including transition zones by up to 18% during the growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aldridge, K. T., J. D. Brookes & G. G. Ganf, 2010. Changes in abiotic and biotic phosphorus uptake across a gradient of stream condition. Rivers Research and Applications 26: 636–649.

    Google Scholar 

  • Auer, M. T. & L. A. Bub, 2004. Selected features of the distribution of chlorophyll along the southern shore of Lake Superior. Journal of Great Lakes Research 30: 269–284.

    Article  CAS  Google Scholar 

  • Björk-Ramberg, S., 1985. Uptake of phosphate and inorganic nitrogen by a sediment-algal system in a subarctic lake. Freshwater Biology 15: 175–183.

    Article  Google Scholar 

  • Bormans, M., P. W. Ford & L. Fabbro, 2005. Spatial and temporal variability in cyanobacterial populations controlled by physical processes. Journal of Plankton Research 27: 61–70.

    Article  Google Scholar 

  • Botelho, D. A. & J. Imberger, 2007. Dissolved oxygen response to wind-inflow interactions in a stratified reservoir. Limnology and Oceanography 52: 2027–2052.

    Article  CAS  Google Scholar 

  • Carmack, E. C., C. B. J. Gray, C. H. Pharo & R. J. Daley, 1979. Importance of lake-river interaction on seasonal patterns in the general circulation of Kamloops Lake, British Columbia. Limnology and Oceanography 24: 634–644.

    Article  Google Scholar 

  • Carpenter, S. R., K. L. Cottingham & D. E. Schindler, 1992. Biotic feedbacks in lake phosphorus cycles. Trends in Ecology & Evolution 7: 332–336.

    Article  CAS  Google Scholar 

  • Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot & G. E. Likens, 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015.

    Article  PubMed  CAS  Google Scholar 

  • Cuker, B. E., P. T. Gama & J. M. Burkholder, 1990. Type of suspended clay influences lake productivity and phytoplankton community response to phosphorus loading. Limnology and Oceanography 35: 830–839.

    Article  Google Scholar 

  • Davison, W., S. I. Heaney, J. F. Talling & E. Rigg, 1980. Seasonal transformations and movements of iron in a productive English lake with deep-water anoxia. Schweizerische Zeitschrift Fur Hydrologie 42: 196–224.

    Article  CAS  Google Scholar 

  • Downing, J. A., Y. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.

    Article  Google Scholar 

  • Ejsmont-Karabin, J., J. Królikowska & T. Węgleńska, 1993. Patterns of spatial distribution of phosphorus regeneration by zooplankton in a river-lake transitory zone. Hydrobiologia 251: 275–284.

    Article  Google Scholar 

  • Fischer, H. B. & R. D. Smith, 1983. Observations of transport to surface waters from a plunging inflow into Lake Mead. Limnology and Oceanography 28: 258–272.

    Article  Google Scholar 

  • Fischer, H. B., J. E. List, R. C. Y. Koh, J. Imberger & N. H. Brooks, 1979. Mixing in inland and coastal waters. Academic Press, Inc., London.

    Google Scholar 

  • Ford, D. E., 1990. Reservoir transport processes. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir limnology: ecological perspectives. John Wiley & Sons Inc., New York.

    Google Scholar 

  • George, D. G. & S. I. Heaney, 1978. Factors influencing the spatial distribution of phytoplankton in a small productive lake. Journal of Ecology 66: 133–155.

    Article  CAS  Google Scholar 

  • Göransson, E., R. K. Johnson & A. Wilander, 2004. Representativity of a mid-lake surface water chemistry sample. Environmental Monitoring and Assessment 95: 221–238.

    Article  PubMed  Google Scholar 

  • Hall, G. H., S. C. Maberly, C. S. Reynolds, I. J. Winfield, J. B. James, J. E. Parker, M. M. Dent, J. M. Fletcher, B. M. Simon & E. Smith, 2000. Feasibility study on the restoration of three Cumbrian lakes. Centre for Ecology and Hydrology, Ambleside.

    Google Scholar 

  • Hart, R. C. & P. D. Wragg, 2009. Recent blooms of the dinoflagellate Ceratium in Albert Falls Dam (KZN): history, causes, spatial features and impacts on a reservoir ecosystem and its zooplankton. Water SA 35: 455–468.

    CAS  Google Scholar 

  • Haygarth, P. M., F. L. Wood, A. L. Heathwaite & P. J. Butler, 2005. Phosphorus dynamics observed through increasing scales in a nested headwater-to-river channel study. Science of the Total Environment 344: 83–106.

    Article  PubMed  CAS  Google Scholar 

  • Heathwaite, A. L., A. I. Fraser, P. J. Johnes, M. Hutchins, E. Lord & D. Butterfield, 2003. The phosphorus indicators tool: a simple model of diffuse P loss from agricultural land to water. Soil Use and Management 19: 1–11.

    Article  Google Scholar 

  • Ihaka, R. & R. Gentleman, 1996. R: a language for data analysis and graphics. Journal of Computational and Graphical Sciences 5: 299–314.

    Article  Google Scholar 

  • Imberger, J., 1998. Physical Processes in Lakes and Oceans. American Geophysical Union, Washington, DC.

    Book  Google Scholar 

  • Istvánovics, V., 1994. Fractional composition, adsorption and release of sediment phosphorus in the Kis-Balaton reservoir. Water Research 28: 717–726.

    Article  Google Scholar 

  • Izydorczyk, K., A. Skowron, A. Wojtal & T. Jurczak, 2008. The stream inlet to a shallow bay of a drinking water reservoir, a ‘hot-spot’ for Microcystis blooms initiation. International Review of Hydrobiology 93: 257–268.

    Article  CAS  Google Scholar 

  • Jirka, G. H. & M. Watanabe, 1980. Thermal structure of cooling ponds. Journal of the Hydraulics Division-ASCE 106: 701–715.

    Google Scholar 

  • Jones, I. D. & J. A. Elliott, 2007. Modelling the effects of changing retention time on abundance and composition of phytoplankton species in a small lake. Freshwater Biology 52: 988–997.

    Article  Google Scholar 

  • Jones, I. D., T. Page, J. A. Elliott, S. J. Thackeray & A. L. Heathwaite, 2011. Increases in lake phytoplankton biomass caused by future climate-driven changes to seasonal river flow. Global Change Biology. doi:10.1111/j.1365-2486.2010.02332.x.

  • Kapustina, L. L., 1996. Bacterioplankton response to eutrophication in Lake Ladoga. Hydrobiologia 322: 17–22.

    Article  Google Scholar 

  • Kimmel, B. L., O. T. Lind & L. J. Paulson, 1990. Reservior primary production. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. John Wiley & Sons Inc., New York.

    Google Scholar 

  • Laborde, S., J. P. Antenucci, D. Copetti & J. Imberger, 2010. Inflow intrusions at multiple scales in a large temperate lake. Limnology and Oceanography 55: 1301–1312.

    Article  Google Scholar 

  • Le Pape, O., F. Chauvet, Y. Désaunay & D. Guérault, 2003. Relationship between interannual variations of the river plume and the extent of nursery grounds for the common sole (Solea solea, L.) in Vilaine Bay. Effects on recruitment variability. Journal of Sea Research 50: 177–185.

    Article  Google Scholar 

  • Lihan, T., S. Z. Nurain, M. A. J. Amizam, A. R. Sahibin & A. M. Mustapha, 2010. Determination of spatial and temporal variability of Pahang River plume using remote sensing images. Map Asia 2010 and ISG 2010, Kuala Lumpur, Malaysia.

  • Likens, G. E., 1972. Eutrophication and aquatic ecosystems. In Likens, G. E. (ed.), Nutrients and Eutrophication: The Limiting Nutrient Controversy. Proceedings of the Symposium on Nutrients and Eutrophication: The Limiting-Nutrient Controversy. American Society of Limnology and Oceanography, Lawrence, Kansas.

  • Liu, Y., P. MacCready & B. M. Hickey, 2009. Columbia River plume patterns in summer 2004 as revealed by a hindcast coastal ocean circulation model. Geophysical Research Letters 36. doi:10.1029/2008GL036447.

  • Lohman, K. & J. R. Jones, 2010. Longitudinal patterns in nutrient chemistry and algal chlorophyll below point sources in three northern Ozark streams. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 30: 1559–1566.

    Google Scholar 

  • Loizeau, J.-L. & J. Dominik, 2000. Evolution of the Upper Rhone River discharge and suspended sediment load during the last 80 years and some implications for Lake Geneva. Aquatic Sciences 62: 54–67.

    Article  Google Scholar 

  • MacIntyre, S. & J. M. Melack, 1995. Vertical and horizontal transport in lakes: linking littoral, benthic, and pelagic habitats. Journal of the North American Benthological Society 14: 599–615.

    Article  Google Scholar 

  • MacIntyre, S., J. O. Sickman, S. A. Goldthwait & G. W. Kling, 2006. Physical pathways of nutrient supply in a small, ultraoligotrophic artic lake during summer stratification. Limnology and Oceanography 51: 1107–1124.

    Article  CAS  Google Scholar 

  • Mackay, E. B., I. D. Jones, A. M. Folkard & P. A. Barker, 2011. Contribution of sediment focusing to heterogeneity of organic carbon and phosphorus burial in small lakes. Freshwater Biology. doi:10.1111/j.1365-2427.2011.02616.x.

  • Madgwick, G., I. D. Jones, S. J. Thackeray, J. A. Elliott & H. J. Miller, 2006. Phytoplankton communities and antecedent conditions: high resolution sampling in Esthwaite Water. Freshwater Biology 51: 1798–1810.

    Article  Google Scholar 

  • Marti, E., J. Aumatell, L. Godé, M. Poch & F. Sabater, 2004. Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. Journal of Environmental Quality 33: 285–293.

    Article  PubMed  CAS  Google Scholar 

  • McColl, R. H. S., 1974. Self-purification of small freshwater streams: phosphate, nitrate and ammonia removal. New Zealand Journal of Marine and Freshwater Research 8: 375–388.

    Article  CAS  Google Scholar 

  • McDowell, R. W., B. J. F. Biggs, A. N. Sharpley & L. Nguyen, 2004. Connecting phosphorus loss from agricultural landscapes to surface water quality. Chemistry and Ecology 20: 1–40.

    Article  CAS  Google Scholar 

  • Miller, H. J., 2008. Investigation into Mechanisms for the Internal Supply of Phosphorus to the Epilimnion of a Eutrophic Lake. PhD Thesis, Geography Department, Lancaster University, Lancaster.

  • Moll, R. & M. Brahce, 1986. Seasonal and spatial distribution of bacteria, chlorophyll, and nutrients in nearshore Lake Michigan. Journal of Great Lakes Research 12: 52–62.

    Article  CAS  Google Scholar 

  • Monismith, S. G., J. Imberger & M. L. Morison, 1990. Convective motions in the sidearm of a small reservoir. Limnology and Oceanography 35: 1676–1702.

    Article  Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Pacini, N. & R. Gächter, 1999. Speciation of riverine particulate phosphorus during rain events. Biogeochemistry 47: 87–109.

    CAS  Google Scholar 

  • Pickrill, R. A. & J. Irwin, 1982. Predominant headwater inflow and its control of lake-river interactions in Lake Wakatipu. New Zealand Journal of Marine and Freshwater Research 16: 201–213.

    Article  Google Scholar 

  • Pinheiro, J. C. & D. M. Bates, 2000. Mixed Effects Models in S and S-PLUS. Springer, New York.

    Book  Google Scholar 

  • Reynolds, C. S., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology 14: 111–142.

    Article  Google Scholar 

  • Reynolds, C. S. & P. S. Davies, 2001. Sources and bioavailabiltiy of phosphorus fractions in freshwaters: a British perspective. Biological Reviews 76: 27–64.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, C. S. & A. E. Walsby, 1975. Water-blooms. Biological Reviews 50: 437–481.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine and Freshwater Research 21: 379–390.

    Article  Google Scholar 

  • Rigler, F. H., 1956. A tracer study of the phosphorus cycle in lake water. Ecology 37: 550–562.

    Article  CAS  Google Scholar 

  • Rueda, F. J., W. E. Fleenor & I. de Vicente, 2007. Pathways of river nutrients towards the euphotic zone in a deep-reservoir of small size: uncertainty analysis. Ecological Modelling 202: 345–361.

    Article  Google Scholar 

  • Schindler, D. W., 2006. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography 51: 356–363.

    Article  Google Scholar 

  • Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.

    Article  Google Scholar 

  • Spigel, R. H., C. Howard-Williams, M. M. Gibbs, S. Stephens & B. Waugh, 2005. Field calibration of a formula for entrance mixing of river inflows to lakes: Lake Taupo, North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 39: 785–802.

    Article  Google Scholar 

  • Stabel, H. H. & M. Geiger, 1985. Phosphorus adsorption to riverine suspended matter: implications for the P-budget of Lake Constance. Water Research 19: 1347–1352.

    Article  CAS  Google Scholar 

  • Stephens, K., 1963. Determination of low phosphate concentrations in lake and marine waters. Limnology and Oceanography 8: 361–362.

    Article  Google Scholar 

  • Stevens, C. L., P. F. Hamblin, G. A. Lawrence & F. M. Boyce, 1995. River-induced transport in Kootenay Lake. Journal of Environmental Engineering 121: 830–837.

    Article  CAS  Google Scholar 

  • Talling, J. F., 1974. Photosynthetic pigments: general outline of spectrophotmetric methods; specific procedures. In Vollenweider, R. A. (ed.), A Manual on Methods of Measuring Primary Production in Aquatic Environments. Blackwell, Oxford: 22–26.

    Google Scholar 

  • Thackeray, S. J., D. G. George, R. I. Jones & I. J. Winfield, 2004. Quantitative analysis of the importance of wind-induced circulation for the spatial structuring of planktonic populations. Freshwater Biology 49: 1091–1102.

    Article  Google Scholar 

  • Thornton, K. W., 1990. Perspectives on reservoir limnology. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological perspectives. John Wiley & Sons, New York.

    Google Scholar 

  • Twinch, A. J., 1984. The role of bottom sediments in modifying soluble phosphate loads to a dendritic, hypertrophic reservoir. In Eriksson, E. (ed.), Proceedings of the Uppsala Conference. IAHS-AISH Publication No. 150: 381–392.

  • Vandenberg, J. A., M. C. Ryan, D. D. Nuell & A. Chu, 2005. Field evaluation of mixing length and attenuation of nutrients and fecal coliform in a wastewater effluent plume. Environmental Monitoring and Assessment 107: 45–57.

    Article  PubMed  CAS  Google Scholar 

  • Vidal, J., 2006. Basin Scale Hydrodynamics in a Mediterranean Reservoir. Implications for the Phytoplankton Dynamics. PhD Thesis, University of Girona, Girona.

  • von Westernhagen, N., 2010. Measurements and Modelling of Eutrophication Processes in Lake Rotoiti, New Zealand. PhD Thesis, Department of Biological Sciences, The University of Waikato, Hamilton.

  • Wood, F. L., A. L. Heathwaite & P. M. Haygarth, 2005. Evaluating diffuse and point phosphorus contributions to river transfers at different scales in the Taw catchment, Devon, UK. Journal of Hydrology 304: 118–138.

    Article  CAS  Google Scholar 

  • Wüest, A. & A. Lorke, 2003. Small-scale hydrodynamics in lakes. Annual Review of Fluid Mechanics 35: 373–412.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ruth and Tom Hansard, Elizabeth Hurrell, Daniel Wright, Fanghua Li and Brian Foley for assistance with fieldwork; Jack Kelly and Martin Rouen for technical assistance with the datalogger and Minitracka; Clive Woods and Kathryn Hockenhull for assistance with the total phosphorus analysis and Gemma Davies for advice on ESRI ArcMap. Finally, we are also grateful to the Environment Agency of England and Wales for provision of the discharge data. The project was funded by a PhD studentship awarded to E. B. Mackay from the Science and Technology Faculty at Lancaster University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor B. Mackay.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackay, E.B., Jones, I.D., Folkard, A.M. et al. Transition zones in small lakes: the importance of dilution and biological uptake on lake-wide heterogeneity. Hydrobiologia 678, 85–97 (2011). https://doi.org/10.1007/s10750-011-0825-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0825-y

Keywords

Navigation