Skip to main content

Advertisement

Log in

Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Future CO2-induced ocean acidification may interact with solar UV radiation to affect physiological performance of microalgae. Therefore, CO2/pH perturbation experiments were carried out under solar radiation with or without UV radiation (295–400 nm) to evaluate the combined effects of seawater acidification (pH 7.7 at 101.3 Pa CO2) and UV on Phaeocystis globosa that forms harmful algal blooms. Under high levels of solar radiation, the acidification reduced the growth rate and photochemical efficiency either under PAR alone or with the presence of UVR radiation. Under reduced levels of solar radiation (cloudy days), however, the CO2-enrichment and UVA acted synergistically to stimulate the photochemical yield and enhanced the growth rate. That is, the effects of CO2-induced acidification were reversed from the negative (sunny days) to positive (cloudy days). CO2 concentrating mechanism f P. globosa was not affected by the elevated pCO2 in view of unchanged photosynthetic affinity for CO2 and stable activity of both intracellular and extracellular carbonic anhydrase. The increased acidity induced higher UVB-related photoinhibition of growth and non-photochemical quenching, and increased the dark respiration and the contents of Chl a, Chl c, and carotenoids, causing the cells to increase their energy demand against the combined stress. Overall, the findings imply that net or balanced effects of ocean acidification on phytoplankton would depend on the depth or mixing that alters the exposures of the cells in water columns to solar radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PAR:

Photosynthetically active radiation

PSII:

Photosystem II

UVA/B/R:

Ultraviolet-A/-B/radiation

P:

PAR alone

PA:

PAR + UVA

PAB:

PAR + UVA + UVB

References

  • Anderson, D. H. & R. J. Robinson, 1946. Rapid electrometric determination of alkalinity of sea water using glass electrode. Industrial and Engineering Chemistry 18: 767–769.

    CAS  Google Scholar 

  • Barry, J. P., T. Tyrrell, L. Hansson, G. Plattner & J. Gattuso, 2010. Atmospheric CO2 targets for ocean acidification perturbation experiments. In Riebesell, U., V. J. Fabry, L. Hansson & J. Gattuso (eds), Guide to Best Practices in Ocean Acidification Research and Data Reporting. Luxembourg Press, Belgium: 53–64.

    Google Scholar 

  • Beardall, J., P. Heraud, S. Roberts, K. Shelly & S. Stojkovic, 2002. Effects of UVB radiation on inorganic carbon acquisition by the marine microalga Dunaliella tertiolecta (Chlorophyceae). Phycologia 41: 268–272.

    Article  Google Scholar 

  • Beardall, J., C. Sobrino & S. Stojkovic, 2009. Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochemical & Photobiological Science 8: 125–1265.

    Article  Google Scholar 

  • Bilger, W. & O. Björkman, 1990. Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research 25: 173–185.

    Article  CAS  Google Scholar 

  • Bouchard, J. N., D. A. Campbell & S. Roy, 2005. Effects of UVB radiation on the D1 protein repair cycle of natural phytoplankton communities from three latitudes (Canada, Brazil and Argentina). Journal of Phycology 41: 273–286.

    Article  CAS  Google Scholar 

  • Buma, A. G. J., S. W. Wright & R. VandenEnden, 2006. PAR acclimation and UVBR-induced DNA damage in Antarctic marine microalga. Marine Ecology Progress Series 315: 33–42.

    Article  CAS  Google Scholar 

  • Burkhardt, S., G. Amoroso, U. Riebesell & D. Sueltemeyer, 2001. CO2 and HCO3 uptake in marine diatom acclimated to different CO2 concentrations. Limnology and Oceanography 46: 1378–1391.

    Article  CAS  Google Scholar 

  • Caldeira, K. & M. E. Wickett, 2003. Anthropogenic carbon and ocean pH. Nature 425: 365.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X. & K. Gao, 2004. Characterization of diurnal photosynthetic rhythms in the marine diatom skeletonema costatum grown in synchronous culture under ambient and elevated CO2. Function Plant Biology 31: 399–404.

    Article  CAS  Google Scholar 

  • Dany, A. L., T. Douki, C. Triantaphylides & J. Cadet, 2001. Repair of the main UV-induced thymine dimeric lesions within Arabidopsis thaliana DNA: evidence for the major involvement of photoreactivation pathways. Journal of Photochemistry and Photobiology B 65: 127–135.

    Article  CAS  Google Scholar 

  • Dunlap, W. C., G. A. Rae & E. W. Helbling, 1995. Ultraviolet-absorbing compounds in natural assemblages of Antarctic phytoplankton. Antarctic Journal U. S. 30: 323–326.

    Google Scholar 

  • Gao, K., Y. Aruga, T. Ishihara, T. Akano & M. Kiyohara, 1991. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. Journal of Applied Phycology 3: 355–362.

    CAS  Google Scholar 

  • Gao, K., Y. Aruga, K. Asada, T. Ishihara, T. Akano & M. Kiyohara, 1993. Calcification in the articulated coralline alga Corallina pilufera, with special reference to the effect of elevated CO2 concentration. Marine Biology 117: 129–132.

    Article  CAS  Google Scholar 

  • Gao, K., W. Guan & E. W. Helbling, 2007a. Effects of solar ultraviolet radiation on photosynthesis of the marine red tide alga Heterosigma akashiwo (Raphidophyceae). Journal of Photochemistry and Photobiology B 86: 936–951.

    Article  Google Scholar 

  • Gao, K., Y. Wu, G. Li, H. Wu, V. E. Villafane & E. W. Helbling, 2007b. Solar UV radiation drives CO2 fixation in marine phytoplankton: A double-edged sword. Plant Physiology 144: 54–59.

    Article  PubMed  CAS  Google Scholar 

  • Gao, K., P. Li, T. Watanabe & E. W. Helbling, 2008. Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (Spirulina) platensis (CYANOPHYTA). Journal of Phycology 3: 777–786.

    Article  Google Scholar 

  • Gao, K., Z. Ruan, V. E. Villafane, J. Gattuso & E. W. Helbling, 2009. Ocean acidification exacerbates the effect of UV radiation on the calcifying of phytoplankter Emiliania huxleyi. Limnology and Oceanography 54: 186–1855.

    Article  Google Scholar 

  • Gattuso, J. & H. Lavigne, 2010. Perturbation experiments to investigate the impact of ocean acidification: approaches and software tools. Biogeoscience Discussion 6: 4413–4439.

    Article  Google Scholar 

  • Genty, B., J. M. Briantais & N. R. Baker, 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemistry and Biophysiology Acta 990: 87–92.

    CAS  Google Scholar 

  • Giordano, M., J. Beardall & J. A. Raven, 2005. CO2 concentration mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 56: 99–131.

    Article  PubMed  CAS  Google Scholar 

  • Giraldez, N., P. J. Aparicio & M. A. QuiAones, 1998. Blue light requirement for HCO3 uptake and its action spectrum in Monoraphidium braunii. Photochemistry and Photobiology 68: 420–426.

    CAS  Google Scholar 

  • Häder, D. P., M. Lebert, R. Marangoni & G. Colombetti, 1999. ELDONET-Euopean light dosimeter network hardware and software. Journal of Photochemistry and Photobiology B 52: 51–58.

    Article  Google Scholar 

  • Hein, M. & K. Sand-Jensen, 1997. CO2 increases oceanic primary production. Nature 388: 526–527.

    Article  CAS  Google Scholar 

  • Helbling, E. W., K. Gao, J. G. Rodrigo, H. Wu & V. E. Villafane, 2003. Utilization of solar UV radiation by coastal phytoplankton assemblages off SE China when exposed to fast mixing. Marine Ecology Progress Series 259: 59–66.

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg, O., P. J. Mumby, A. J. Hooten & R. S. Steneck, 2007. Coral reefs under rapid climate change and ocean acidification. Science 318: 1737–1742.

    Article  PubMed  CAS  Google Scholar 

  • Krizek, D. T., 2004. Influence of PAR and UVA in determining plant sensitivity and photomorphogenic responses to UVB radiation. Photochemistry and Photobiology 79: 307–315.

    Article  PubMed  CAS  Google Scholar 

  • LaRoche, J., B. Rost & A. Engel, 2010. Bioassays, batch culture and chemostat experimentation. In Riebesell, U., V. J. Fabry, L. Hansson & J. Gattuso (eds), Guide to Best Practices in Ocean Acidification Research and Data Reporting. Luxembourg Press, Belgium: 81–94.

    Google Scholar 

  • Lesser, M. P., 2008. Effects of ultraviolet radiation on productivity and nitrogen fixation in the cyanobacterium, Anabaena sp. (Newton’s strain). Hydrobiologia 598: 1–9.

    Article  CAS  Google Scholar 

  • Lewis, E. & D. W. R. Wallace, 1998. Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy [available on internet at http://cdiac.ornl.gov/oceans/CO2rprt.html]. Accessed 12 June 2007.

  • Munday, P. L., D. L. Dixson & J. M. Donelson, 2009. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proceeding of Royal society B 276: 3275–3283.

    Article  CAS  Google Scholar 

  • Orr, J. C., V. J. Fabry, O. Aumont, L. Bopp & S. C. Doney, 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686.

    Article  PubMed  CAS  Google Scholar 

  • Peperzak, L. & M. Poelman, 2008. Mass mussel mortality in the Netherlands after a bloom of Phaeocystis globosa (prymnesiophyceae). Journal of Sea Research 60: 220–222.

    Article  Google Scholar 

  • Qi, Y., J. Chen, Z. Wang, N. Xu, Y. Wang, P. Shen, et al., 2004. Some observations on harmful algal bloom (HAB) events along the coast of Guangdong, southern China in 1998. Hydrobiologia 512: 209–214.

    Article  Google Scholar 

  • Raven, J. A. & J. Beardall, 2003. Carbon acquisition mechanisms of algae: carbon dioxide diffusion and carbon dioxide concentration mechanisms. In Larkum, A. W. D., S. E. Douglas & J. A. Raven (eds), Advances in Photosynthesis and Respiration, Vol. 14: Photosynthesis in Algae. Kluwer, Dordrecht: 225–244.

    Google Scholar 

  • Riebesell, U., 2004. Effects of CO2 enrichment on marine phytoplankton. Journal of Oceanography 60: 719–729.

    Article  CAS  Google Scholar 

  • Riebesell, U., D. A. Wolf-Gladrow & V. Smetacek, 1993. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361: 249–251.

    Article  CAS  Google Scholar 

  • Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe & F. M. M. Morel, 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407: 364–367.

    Article  PubMed  CAS  Google Scholar 

  • Riebesell, U., K. G. Schulz, R. G. J. Bellerby, M. Botros, P. Fritsche, M. Meyerhöfer, C. Neill, G. Nonda, A. Oschlies, J. Wohlers & E. Zöllner, 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450: 545–548.

    Article  PubMed  CAS  Google Scholar 

  • Rilegman, R. & W. V. Boekel, 1996. The ecophysiology of phaeocystis globosa: a review. Journal of Sea Research 35: 235–242.

    Article  Google Scholar 

  • Rost, B., U. Riebesell, S. Burkhardt & D. Sueltemeyer, 2003. Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography 48: 55–67.

    Article  Google Scholar 

  • Rousseau, V., M. Chretiennot-Dinet, A. Jacobsen, P. Verity & S. Whipple, 2007. The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology. Biogeochemistry 83: 29–47.

    Article  Google Scholar 

  • Satoh, A., N. Kurano & S. Miyachi, 2001. Inhibition of photosynthesis by intracellular carbonic anhydrase in microalga under excess concentrations of CO2. Photosynthesis Research 68: 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Schippers, P., M. Lürling & M. Scheffer, 2004. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecology Letters 7: 446–451.

    Article  Google Scholar 

  • Schmidt, E. C., M. Maraschin & Z. L. Bouzon, 2010. Effects of UVB radiation on the carragenophyte Kappaphycus alvarezii (Rhodophyta, Gigartinales). Hydrobiologia 649: 171–182.

    Article  CAS  Google Scholar 

  • Schoemann, V., S. Becquevort, J. Stefels, V. Rousseau & C. Lancelot, 2005. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. Journal of Sea Research 53: 43–66.

    Article  CAS  Google Scholar 

  • Sobrino, C., P. J. Neale & L. M. Lubian, 2005. Interaction of UV radiation and inorganic carbon supply in the inhibition of photosynthesis: spectral and temporal response of two marine picoplankton. Journal of Photochemistry and Photobiology B 81: 384–393.

    Article  CAS  Google Scholar 

  • Sobrino, C., M. L. Ward & P. J. Neale, 2008. Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, photosynthesis, and spectral sensitivity of photoinhibition. Limnology and Oceanography 53: 494–505.

    Article  CAS  Google Scholar 

  • Sobrino, C., P. J. Neale, J. D. Phillips-Kress, R. E. Moeller & J. Porter, 2009. Elevated CO2 increases sensitivity to ultraviolet radiation in lacustrine phytoplankton assemblages. Limnology and Oceanography 54: 2448–2459.

    Article  CAS  Google Scholar 

  • Tortell, P. D., G. R. Ditullio, D. M. Sigmann & F. M. M. Morel, 2002. CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Marine Ecology Progress Series 236: 37–43.

    Article  Google Scholar 

  • Wang, Y., W. O. Smith Jr., X. Wang & S. Li, 2010. Subtle biological responses to increased CO2 concentrations by Phaeocystis globosa Scherffel, a harmful algal bloom species. Geophysical Research Letters 37: L09604.

    Article  Google Scholar 

  • Wellburn, A. R., 1994. Spectral determination of chlorophylls a and b, as well as total Carotenoids, using various solvents with spectrophotometers of different resolution. Journal of plant physiology 144: 307–313.

    CAS  Google Scholar 

  • Wu, H. & K. Gao, 2009. UV radiation-stimulated activity of extracellular carbonic anhydrase in the marine diatom Skeletonema costatum. Functional Plant Biology 36: 137–143.

    Article  CAS  Google Scholar 

  • Wu, Y. P., K. Gao & U. Riebesell, 2010. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7: 2915–2923.

    Article  CAS  Google Scholar 

  • Ye, C., K. Gao & M. Giordano, 2008. The odd behaviour of carbonic anhydrase in the terrestrial cyanobacterium nostoc flagelliforme during hydration dehydration cycles. Environmental Microbiology 10: 1018–1023.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y. & K. Gao, 2009. Impacts of solar UV radiation on the photosynthesis, growth, and UV-absorbing compounds in Gracilaria lemaneiformis (RHODOPHYTA) grown at different nitrate concentration. Journal of Phycology 45: 314–323.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Basic Research Program of China (No. 2009CB421207), by program for Changjiang Scholars and Innovative Research Team (IRT0941) and by National Natural Science Foundation (No. 40930846, No. 40876058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunshan Gao.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Gao, K. Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae). Hydrobiologia 675, 105–117 (2011). https://doi.org/10.1007/s10750-011-0807-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0807-0

Keywords

Navigation