Skip to main content

Effects of Ocean Acidification and UV Radiation on Marine Photosynthetic Carbon Fixation

  • Chapter
  • First Online:
Systems Biology of Marine Ecosystems

Abstract

The oceans absorb anthropogenically released CO2 at a rate of more than one million tons per hour, which causes a pH decrease of seawater and results in ocean acidification (OA). The effect of OA and absorption of CO2 via the biological carbon pump driven by marine photosynthesis has drawn increasing attentions. As a consequence, there are numerous studies on influences of OA on primary producers, and the effects on photosynthetic carbon fixation are still under debate. OA can promote the growth of diatoms at low PAR irradiances and inhibit it at high PAR. Besides, OA may influence metabolic pathways of phytoplankton, upregulating β-oxidation, and the tricarboxylic acid cycle, resulting in increased accumulation of toxic phenolic compounds. In parallel, phytoplankton cells in the upper mixed layer are affected by intense PAR and UV radiation (UVR). The calcareous layers of calcified algae, which have been shown to shield the organisms from UVR, are thinned due to OA, exposing the cells to increased UVR and further inhibiting the calcification. Therefore, effects of OA and UV on marine photosynthetic carbon fixation could be compounded. While the photosynthetic carbon fixation is controlled by other environmental stressors in addition to OA and UV, such as nutrients limitation and warming, combined effects of OA and UV have been less considered. In this review, we synthesize and analyze recent advances on effects of OA and UV and their combined effects, implying that future studies should pay special attentions to ecological and physiological effects of OA in the presence of solar UV irradiance to reflect more realistic implications. The ecophysiological effects of OA and/or UV and their mechanisms in complex environments should be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bais AF, McKenzie RL, Bernhard G, Aucamp PJ, Ilyas M, Madronich S, Tourpali K (2015) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 14:19–52

    Article  CAS  PubMed  Google Scholar 

  • Beardall J, Stojkovic S, Gao KS (2014) Interactive effects of nutrient supply and other environmental factors on the sensitivity of marine primary producers to ultraviolet radiation: implications for the impacts of global change. Aquat Biol 22:5–23

    Article  Google Scholar 

  • Berthelot H, Moutin T, L’Helguen S, Leblanc K, Hélias S, Grosso O, Leblond N, Charrière B, Bonnet S (2015) Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosm experiment (New Caledonia lagoon). Biogeosciences 12:4099–4112

    Article  Google Scholar 

  • Böttjer D, Karl MD, Letelier MR et al (2014) Experimental assessment of diazotroph reponses to elevated seawater pCO2 in the North Pacific Subtropical Gyre. Global Biogeochem Cycle 28(6):601–616

    Article  Google Scholar 

  • Boyd PW (2011) Beyond ocean acidification. Nat Geosci 4:273–274

    Article  CAS  Google Scholar 

  • Brennan G, Collins S (2015) Growth responses of a green alga to multiple environmental drivers. Nat Clim Chang 5:892–897

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  PubMed  Google Scholar 

  • Chen SW, Gao KS (2011) Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae). Hydrobiologia 675(1):105–117

    Article  CAS  Google Scholar 

  • Czerny J, Barcelos e Ramos J, Riebesell U (2009) Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena. Biogeosciences 6:1865–1875

    Article  CAS  Google Scholar 

  • Eichner M, Rost B, Kranz SA (2014) Diversity of ocean acidification effects on marine N2 fixers. J Exp Mar Biol Ecol 457:199–207

    Article  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT et al (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  • Gao KS, Campbell DA (2014) Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review. Funct Plant Biol 41:449–459

    Article  CAS  Google Scholar 

  • Gao KS, Zheng YQ (2010) Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Glob Change Biol 16:2388–2398

    Article  Google Scholar 

  • Gao KS, Wu Y, Li G, Wu H, Villafane VE, Helbling EW (2007a) Solar UV radiation drives CO2 fixation in marine phytoplankton: a double-edged sword. Plant Physiol 144:54–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao KS, Li G, Helbling EW, Villafane VE (2007b) Variability of UVR effects on photosynthesis of summer phytoplankton assemblages from a tropical coastal area of the South China Sea. Photochem Photobiol 83:802–809

    Article  CAS  PubMed  Google Scholar 

  • Gao KS, Li P, Watanabe T, Helbling EW (2008) Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis and DNA of Arthrospira (Spirulina) platensis (Cyanophyta). J Phycol 44:777–786

    Article  PubMed  Google Scholar 

  • Gao KS, Ruan ZX, Villafane VE, Gattuso JP, Helbling EW (2009) Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnol Oceanogr 54:1855–1862

    Article  CAS  Google Scholar 

  • Gao KS, Xu JT, Gao G et al (2012a) Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat Clim Chang 2(7):519–523

    CAS  Google Scholar 

  • Gao KS, Helbling EW, Häder DP, Hutchins DA (2012b) Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar Ecol Prog Ser 470:167–189

    Article  CAS  Google Scholar 

  • Gattuso JP, Magnan A, Bille R (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349(6243):aac4722

    Article  PubMed  Google Scholar 

  • Gradoville MR, White AE, Böttjer D, Church MJ, Letelier RM (2014) Diversity trumps acidification: lack of evidence for carbon dioxide enhancement of Trichodesmium community nitrogen or carbon fixation at Station ALOHA. Limnol Oceanogr 59:645–659

    Article  CAS  Google Scholar 

  • Häder DP, Gao KS (2015) Interactions of anthropogenic stress factors on marine phytoplankton. Front Environ Sci 3:1–14

    Google Scholar 

  • Häder DP, Helbling EW, Smith RC et al (2011) Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 10:242–260

    Article  PubMed  Google Scholar 

  • Häder DP, Williamson CE, Wängberg SÅ, Rautio M, Rose KC, Gao KS, Helbling EW, Sinha RP, Worrest R (2014) Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem Photobiol Sci 14:108–126

    Article  Google Scholar 

  • Hargreaves BR (2003) Water column optics and penetration of UVR. In: Helbling EW, Zagarese HE (eds) UV effects in aquatic organisms and ecosystems. The Royal Society of Chemistry, Cambridge, pp 59–105

    Chapter  Google Scholar 

  • Hattenrath-Lehmann TK, Smith JL, Wallace RB et al (2015) The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate, Alexandrium fundyense. Limnol Oceanogr 60(1):198–214

    Article  CAS  PubMed  Google Scholar 

  • Helbling EW, Gao KS, Goncalves R et al (2003) Utilization of solar UV radiation by costal phytoplankton assemblages off SE China when exposed to fast mixing. Mar Ecol Prog Ser 259:59–66

    Article  CAS  Google Scholar 

  • Helbling EW, Banaszak AT, Villafañe VE (2015) Global change feed-back inhibits cyanobacterial photosynthesis. Sci Rep 5:14514

    Article  Google Scholar 

  • Hönisch B, Rdigwell A, Schmidt DN et al (2012) The geological record of ocean acidification. Science 335(6072):1058–1063

    Article  PubMed  Google Scholar 

  • Hutchins DA, Fu FX, Webb EA, Walworth N, Tagliabue A (2013) Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. Nat Geosci 6:790–795

    Article  CAS  Google Scholar 

  • Jin P, Gao KS, Villafañe EV, Campbell AD, Helbling EW (2013) Ocean acidification alters the photosynthetic response of a coccolithophorid to fluctuating ultraviolet and visible radiation. Plant Physiol 162:2084–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin P, Wang TF, Liu NN, Dupont S, Beardall J, Boyd PW, Riebesell U, Gao KS (2015) Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nat Commun 6:8714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JM, Lee K, Shin K et al (2006) The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controled mesocosm experiment. Limnol Oceanogr 51:1629–1636

    Article  CAS  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D et al (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118–120

    Article  CAS  PubMed  Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, et al (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for Future Research. Report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey

    Google Scholar 

  • Laube JC, Newland MJ, Hogan C et al (2014) Newly detected ozone-depleting substances in the atmosphere. Nat Geosci 7:266–269

    Article  CAS  Google Scholar 

  • Li G, Wu YP, Gao KS (2009) Effects of Typhoon Kaemi on coastal phytoplankton assemblages in the South China Sea, with special reference to the effects of solar UV radiation. J Geophys Res Biogeo 114:G04029

    Google Scholar 

  • Li G, Gao KS, Gao G (2011a) Differential impacts of solar UV radiation on photosynthetic carbon fixation from the coastal to offshore surface waters in the South China Sea. Photochem Photobiol 87(2):329–334

    Article  CAS  PubMed  Google Scholar 

  • Li G, Gao KS, Yuan DX et al (2011b) Relationship of photosynthetic carbon fixation with environmental changes in the Jiulong River estuary of the South China Sea, with special reference to the effects of solar UV radiation. Mar Pollut Bull 62(8):1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Li G, Che ZW, Gao KS (2013a) Photosynthetic carbon fixation by tropical coral reef phytoplankton assemblages: a UVR perspective. Algae 28:281–288

    Article  CAS  Google Scholar 

  • Li G, Gao KS (2013b) Cell size-dependent effects of solar UV radiation on primary production in coastal waters of the South China Sea. Estuar Coasts 36:728–736

    Article  CAS  Google Scholar 

  • Li W, Gao KS (2012) A marine secondary producer respires and feeds more in a high CO2 ocean. Mar Pollut Bull 64:699–703

    Article  CAS  PubMed  Google Scholar 

  • Mackey KRM, Morris JJ, Morel FMM et al (2015) Response of photosynthesis to ocean acidification. Oceanography 28(2):74–91

    Article  Google Scholar 

  • Manney GL, Santee ML, Rex M et al (2011) Unprecedented Arctic ozone loss in 2011. Nature 478:469–475

    Article  CAS  PubMed  Google Scholar 

  • Michaels AF, Karl DM, Capone DG (2001) Element stoichiometry, new production and nitrogen fixation. Oceanography 14(4):68–77

    Article  Google Scholar 

  • Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107:308–341

    Article  CAS  PubMed  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Piazena H, Häder DP (1997) Penetration of solar UV and PAR into different waters of the Baltic Sea and remote sensing of phytoplankton. In: Häder DP (ed) The effects of ozone depletion on aquatic ecosystems. Academic Press, Austin, pp 45–96

    Google Scholar 

  • Piazena H, Perez-Rodriguesb E, Häder DP et al (2002) Penetration of solar radiation into the water column of the central subtropical Atlantic Ocean-optical properties and possible biological consequences. Deep-Sea Res 49:3513–3528

    CAS  Google Scholar 

  • Rastogi R, Singh S, Incharoensakdi A, Häder DP, Sinha R (2014) Ultraviolet radiation-induced generation of reactive oxygen species, DNA damage and induction of UV-absorbing compounds in the cyanobacterium Rivularia sp. HKAR-4. S Afr J Bot 90:163–169

    Article  CAS  Google Scholar 

  • Reibesell U, Tortell PD (2011) Effects of ocean acidification on pelagic organisms and ecosystems. In: Gattuso JP, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 291–311

    Google Scholar 

  • Riebesell U, Gattuso JP (2015) Lessons learned from ocean acidification research. Nat Clim Chang 5:12–14

    Article  CAS  Google Scholar 

  • Sabine CL, Feely RA, Gruber N et al (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):367–371

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Hutchins DA, Feng Y et al (2011) Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-Nitzchia Multiseries. Limnol Oceanogr 56:829–840

    Article  CAS  Google Scholar 

  • The Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide. ISBN 0854036172

    Google Scholar 

  • Tortell PD, Rau GH, Morel FMM (2000) Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnol Oceanogr 45:1485–1500

    Article  CAS  Google Scholar 

  • Tzortziou M, Osburn CL, Neale PJ (2007) Photobleaching of dissolved organic material from a tidal marsh-estuarine system of the Chesapeake Bay. Photochem Photobiol 83:782–792

    Article  CAS  PubMed  Google Scholar 

  • Verspagen JM, Van de Waal DB, Finke JF, Visser PM, Huisman J (2014) Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels. Ecol Lett 17:951–960

    Article  PubMed  Google Scholar 

  • Wannicke N, Engel SEA, Grossart HP et al (2012) Response of Nodularia spumigena to PCO2. Biogeosciences 9:2973–2988

    Article  CAS  Google Scholar 

  • Wu H, Gao KS, Ma ZL, Watanabe T (2005) Effects of solar ultraviolet radiation on biomass production and pigment contents of Spirulina platensis in commercial operations under sunny and cloudy weather conditions. Fish Sci 71:454–456

    Article  CAS  Google Scholar 

  • Wu XJ, Gao G, Giordano M et al (2012) Growth and photosynthesis of a diatom grown under elevated CO2 in the presence of solar UV radiation. Fundam Appl Limnol 180(4):279–290

    Article  CAS  Google Scholar 

  • Wu Y, Gao KS, Riebesell U (2010) CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7:2915–2923

    Article  CAS  Google Scholar 

  • Xu K, Gao KS (2014) Solar UV irradiances modulate effects of ocean acidification on the coccolithophorid Emiliania huxleyi. Photochem Photobiol 91:92–101

    Article  PubMed  Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam, 346 pp

    Google Scholar 

  • Zepp RG, Erickson DJ III, Paul ND et al (2007) Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem Photobiol Sci 6:286–300

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu M, Qin B et al (2009) Photochemical degradation of chromophoric dissolved organic matter exposed to simulated UV-B and natural solar radiation. Hydrobiologia 627:159–168

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunshan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gao, K., Häder, DP. (2017). Effects of Ocean Acidification and UV Radiation on Marine Photosynthetic Carbon Fixation. In: Kumar, M., Ralph, P. (eds) Systems Biology of Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-62094-7_12

Download citation

Publish with us

Policies and ethics