Skip to main content

Advertisement

Log in

Seasonal adaptations of Daphnia pulicaria swimming behaviour: the effect of water temperature

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Daphnia swimming behaviour is controlled by a variety of external factors, including light, presence of food and predators. Temperature represents a key driver in the dynamics of Daphnia populations, as well as on their motion. In this study, we have investigated the behavioural adaptations of adult Daphnia pulicaria to two different temperatures, representative of the mean winter (3°C) and summer (22°C) temperatures to which these organisms are exposed to in the real environment. Video observations were conducted both in the presence and in the absence of light to investigate possible day/night modifications in the motion strategy. Analyses of mean speed, velocity power spectral density and trajectory fractal dimension point out specific adaptations that allow D. pulicaria to successfully adjust to the changing conditions of the environment. Independently of the light conditions, in cold waters D. pulicaria swim almost vertically with defined motional frequencies, likely to increase the encounter with food items diluted in the fluid. A similar behaviour is displayed by the animals at summertime temperatures in the presence of light; however, in this case the vertical swimming is coupled with the absence of peaks in the power spectra and might be exploited to avoid predators. In contrast, at 22°C in dark conditions D. pulicaria move horizontally with lateral motions to take advantage of possible patches of phytoplankton. This information sheds new light into the complex and dynamic adaptations of D. pulicaria in response to external stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baillieul, M. & R. Blust, 1999. Analysis of the swimming velocity of cadmium-stressed Daphnia magna. Aquatic Toxicology 44: 245–254.

    Article  CAS  Google Scholar 

  • Beklioglu, M., A. G. Gozen, F. Yildirim, P. Zorlu & S. Onde, 2008. Impact of food concentration on diel vertical migration behaviour of Daphnia pulex under fish predation risk. Hydrobiologia 614: 321–327.

    Article  Google Scholar 

  • Bendat, S. J. & A. G. Piersol, 1966. Measurements and Analysis of Random Data. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Brewer, M. C. & J. N. Coughlin, 1996. Virtual plankton: a novel approach to the investigation of aquatic predator-prey interactions. In Lenz, P. H., D. K. Hartline, J. E. Purcell & D. L. Macmillan (eds), Zooplankton: Sensory Ecology and Physiology. Gordon and Breach, Amsterdam: 425–434.

    Google Scholar 

  • Buczkowski, S., S. Kyriacos, F. Nekka & L. Cartilier, 1998. The modified box-counting method: analysis of some characteristic parameters. Pattern Recognition 31: 411–418.

    Article  Google Scholar 

  • Burns, C. W. & F. H. Rigler, 1967. Comparison of filtering rates of Daphnia rosea in lake water and in suspensions of yeast. Limnology and Oceanography 12: 492–502.

    Article  Google Scholar 

  • Castiglione, P., M. Cencini, A. Vulpiani & E. Zambianchi, 1999. Transport in finite size systems: an exit time approach. Chaos 9: 871–879.

    Article  PubMed  Google Scholar 

  • Curl, H. J., J. T. Hardy & R. Ellermeier, 1972. Spectral absorption of solar radiation in alpine snowfields. Ecology Letters 53: 1189–1194.

    Google Scholar 

  • Dawidowicz, P. & C. J. Loose, 1992. Metabolic costs during predator induced diel vertical migration of Daphnia. Limnology and Oceanography 37: 1589–1595.

    Article  Google Scholar 

  • de Bernardi, R. & R. H. Peters, 1987. Why Daphnia? In Peters, R. H. & R. de Bernardi (eds), Daphnia: Memorie dell’Istituto Italiano di Idrobiologia Dott. Marco de Marchi, Vol. 45. Consiglio Nazionale delle Ricerche, Verbania-Pallanza: 353–366.

    Google Scholar 

  • Dodson, S. & C. Ramcharan, 1991. Size-specific swimming behavior of Daphnia pulex. Journal of Plankton Research 13: 1367–1379.

    Article  Google Scholar 

  • Dodson, S. I., T. Hanazato & P. R. Gorski, 1995. Behavioral responses of Daphnia pulex exposed to carbaryl and Chaoborus kairomone. Environmental Toxicology and Chemistry 14: 43–50.

    CAS  Google Scholar 

  • Dodson, S. I., S. Ryan, R. Tollrien & W. Lampert, 1997. Individual swimming behaviour of Daphnia: effects of food, light and container size in four clones. Journal of Plankton Research 19: 1537–1552.

    Article  Google Scholar 

  • Garnier, J. & S. Mourelatos, 1991. Contribution of grazing in phytoplankton overall losses in a shallow French lake. Freshwater Biology 25: 515–523.

    Article  Google Scholar 

  • Gerritsen, J., 1982. Behavioral response of Daphnia to rate of temperature change: possible enhancement of vertical migration. Limnology and Oceanography 27: 251–254.

    Article  Google Scholar 

  • Gliwicz, Z. M. & P. Maszczyk, 2007. Daphnia growth is hindered by chemical information on predation risk at high but not at low food levels. Oecologia 150: 706–715.

    Article  CAS  PubMed  Google Scholar 

  • Gorski, P. R. & S. I. Dodson, 1996. Free-swimming Daphnia pulex can avoid following Stokes’ law. Limnology and Oceanography 41: 1815–1821.

    Article  Google Scholar 

  • Heugens, E. H. W., T. Jager, R. Creyghton, M. H. S. Kraak, A. J. Hendriks, N. M. Van Straalen & W. Admiraal, 2003. Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environmental Science & Technology 37: 2145–2151.

    Article  CAS  Google Scholar 

  • Hwang, J.-S. & J. R. Strickler, 2001. Can copepods differentiate prey from predator hydromechanically? Zoological Studies 40: 1–6.

    Google Scholar 

  • Johnson, T. B., 1995. Long term dynamics of the zooplanktivorous fish community in Lake Mendota, WI. PhD Thesis, University of Madison-Wisconsin, Madison, USA.

  • Kalff, J., 2002. Limnology: Inland Water Ecosystems. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Kerfoot, W. C., 1985. Adaptive value of vertical migration: comments on the predation hypothesis and some alternatives. In Rankin, M. A. (ed.), Migration: Mechanisms, Adaptive Significance, Vol. 27. University of Texas, Port Aransas: 91–113.

    Google Scholar 

  • Kibby, H. V., 1971. Effect of temperature on the feeding behavior of Daphnia rosea. Limnology and Oceanography 16: 580–581.

    Article  Google Scholar 

  • Loiterton, B., M. Sundbom & T. Vrede, 2004. Separating physical and physiological effects of temperature on zooplankton feeding rate. Aquatic Sciences 66: 123–129.

    Article  Google Scholar 

  • MacArthur, J. W. & W. H. T. Baittie, 1929. Metabolic rates and their relation to longevity in Daphnia magna. Journal of Experimental Zoology 53: 243–268.

    Article  Google Scholar 

  • Mandelbrot, B. B., 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156: 636–638.

    Article  CAS  PubMed  Google Scholar 

  • McMahon, J. W., 1965. Some physical factors influencing the feeding behavior of Daphnia magna Straus. Canadian Journal of Fisheries and Aquatic Sciences 43: 603–611.

    Google Scholar 

  • O’Keefe, T. C., M. C. Brewer & S. I. Dodson, 1998. Swimming behavior of Daphnia: its role in determining predation risk. Journal of Plankton Research 20: 973–984.

    Article  Google Scholar 

  • Papoulis, A., 1965. Probability, Random Variables, and Stochastic Processes. McGraw Hill, New York.

    Google Scholar 

  • Reichwaldt, E. S., 2008. Food quality influences habitat selection in Daphnia. Freshwater Biology 53: 872–883.

    Article  Google Scholar 

  • Reichwaldt, E. S., I. D. Wolf & H. Stibor, 2005. Effects of a fluctuating temperature regime experienced by Daphnia during diel vertical migration on Daphnia life history parameters. Hydrobiologia 543: 199–205.

    Article  Google Scholar 

  • Ringelberg, J., 1999. The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biological Reviews 74: 397–423.

    Article  Google Scholar 

  • Ryan, S. & S. I. Dodson, 1998. Seasonal analysis of Daphnia pulicaria swimming behavior. Hydrobiologia 384: 111–118.

    Article  Google Scholar 

  • Schalau, K., K. Rinke, D. Straile & F. Peeters, 2008. Temperature is the key factor explaining interannual variability of Daphnia development in spring: a modelling study. Oecologia 157: 531–543.

    Article  PubMed  Google Scholar 

  • Seidl, M. D., R. Pirow & R. J. Paul, 2005. Acclimation of the microcrustacean Daphnia magna to warm temperatures is dependent on haemoglobin expression. Journal of Thermal Biology 30: 532–544.

    Article  CAS  Google Scholar 

  • Seiwell, H. R., 1930. Influence of temperature on the rate of beating of the hearth of a Cladoceran. Journal of Experimental Zoology 57: 331–346.

    Article  Google Scholar 

  • Seuront, L., M. C. Brewer & J. R. Strickler, 2004. Quantifying zooplankton swimming behavior: the question of scale. In Seuront, L. & P. G. Strutton (eds), Handbook of Scaling Methods in Aquatic Ecology – Measurements, Analysis, Simulation. CRC Press, Boca Raton, FL: 333–359.

    Google Scholar 

  • Smith, F. E. & E. R. Baylor, 1953. Color responses in the Cladocera and their ecological significance. The American Naturalist 87: 49–55.

    Article  Google Scholar 

  • Smith, K. C. & E. R. Macagno, 1990. UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda). A fourth spectral class in single ommatidia. Journal of Comparative Physiology A 166: 597–606.

    Article  CAS  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry. W. H. Freeman and Company, New York.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Szulkin, M., P. Dawidowicz & S. I. Dodson, 2006. Behavioural uniformity as a response to cues of predation risk. Animal Behaviour 71: 1013–1019.

    Article  Google Scholar 

  • Threlkeld, S. T., 1987. Daphnia life history strategies and resource allocation patterns. In Peters, R. H. & R. de Bernardi (eds), Daphnia. Memorie dell’Istituto Italiano di Idrobiologia Dott. Marco de Marchi, Vol. 45. Consiglio Nazionale delle Ricerche, Verbania-Pallanza: 353–366.

    Google Scholar 

  • Tiselius, P., B. Hansen, P. Jonsson, T. Kiørboe, T. G. Nielsen, S. Piontkovski & E. Saiz, 1995. Can we use laboratory-reared copepods for experiments? A comparison of feeding behaviour and reproduction between a field and a laboratory population of Acartia tonsa. ICES Journal of Marine Science 52: 369–376.

    Article  Google Scholar 

  • Tukey, J. W., 1977. Exploratory data analysis. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Uttieri, M., M. G. Mazzocchi, A. Nihongi, M. Ribera d’Alcalà, J. R. Strickler & E. Zambianchi, 2004. Lagrangian description of zooplankton swimming trajectories. Journal of Plankton Research 26: 99–105.

    Article  Google Scholar 

  • Uttieri, M., E. Zambianchi, J. R. Strickler & M. G. Mazzocchi, 2005. Fractal characterization of three-dimensional zooplankton swimming trajectories. Ecological Modelling 185: 51–63.

    Article  Google Scholar 

  • Vijverberg, J., 1980. Effect of temperature in laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands. Freshwater Biology 10: 317–340.

    Article  Google Scholar 

  • Vogel, S., 1994. Life in Moving Fluids – The Physical Biology of Flow. Princeton University Press, Princeton.

    Google Scholar 

  • Weber, A. & A. Van Noordwijk, 2002. Swimming behaviour of Daphnia clones: differentiation through predator infochemicals. Journal of Plankton Research 24: 1335–1348.

    Article  CAS  Google Scholar 

  • Welch, P. D., 1970. The use of Fast Fourier Transform for estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 15: 70–73.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to recognize the generous donation of the VidAna tracking software by Dr. Michael Hofmann (University of Bonn). M.U. is sincerely grateful to E. Zambianchi and P. Licandro for constructive exchanges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Uttieri.

Additional information

Handling editor: P. Spaak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziarek, J.J., Nihongi, A., Nagai, T. et al. Seasonal adaptations of Daphnia pulicaria swimming behaviour: the effect of water temperature. Hydrobiologia 661, 317–327 (2011). https://doi.org/10.1007/s10750-010-0540-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0540-0

Keywords

Navigation