Skip to main content
Log in

Sustainability assessment and comparison of efficacy of four P-inactivation agents for managing internal phosphorus loads in lakes: sediment incubations

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A novel application of a continuous flow incubation system (CFIS) was used to assess four phosphorus (P) inactivation agents—alum, Phoslock™, a new modified zeolite (Z2G1 or Aqual-P™), and allophone—when used as sediment capping agents to manage internal P loads in lakes. The CFIS technique allowed combined efficacy and sustainability assessment, including: (1) flux measurements during simulation of stratified (anoxic) and mixed (aerobic) conditions on the same sediment through multiple cycles to assess the longevity of a range of product doses; (2) simulation of a summer algal bloom collapse and subsequent burial of the products; and (3) investigation of non-target effects on nitrification and denitrification processes at the sediment–water interface. Minimum P-removal dose rates were found to differ substantially at 80 g m−2 for alum, 190 g m−2 for Z2G1, 220 g m−2 for allophane and 280 g m−2 for Phoslock™, for similar capping layer thickness of about 2 mm, and would be effective for at least 4 years. All products temporarily suppressed nitrification and denitrification under aerobic conditions, and it may be important to minimise product application to any permanently aerobic zones, such as the littoral areas of a lake. While the aluminium (Al)-based products did not enhance Al fluxes in the CFIS, lanthanum (La) was released at a near constant rate of around 2 mg La m−2 day−1 from the Phoslock™ treatments over a period of at least 14 days. Spatial variability of sediment P, bioturbation, and burial are factors that will affect up-scaling these results to a whole lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barry, M. J. & B. J. Meehan, 2000. The acute and chronic toxicity of lanthanum to Daphnia carinata. Chemosphere 41: 1669–1674.

    Article  CAS  PubMed  Google Scholar 

  • Besser, J. M., C. J. Ingersoll, E. N. Leonard & D. R. Mount, 1998. Effect of zeolite on toxicity of ammonia in freshwater sediments: implications for toxicity identification evaluation procedures. Environmental Toxicology and Chemistry 17(11): 2310–2317.

    Article  CAS  Google Scholar 

  • Berg, U., T. Neumann, D. Donnert, R. Nüsch & D. Stüben, 2004. Sediment capping in eutrophic lakes: efficiency of undisturbed barriers to immobilize phosphorus. Applied Geochemistry 19: 1759–1771.

    Article  CAS  Google Scholar 

  • Borgmann, U., Y. Couillard, P. Doyle & D. G. Dixon, 2005. Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness. Environmental Toxicology and Chemistry 24: 641–652.

    Article  CAS  PubMed  Google Scholar 

  • Burger, D., D. P. Hamilton, C. A. Pilditch & M. M. Gibbs, 2007. Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiologia 584: 13–25.

    Article  CAS  Google Scholar 

  • Clearwater, S. J., 2004. Chronic exposure of midge larvae to Phoslock. NIWA report AUS2004-005 to ECOWISE Environmental Pty Ltd: 25 pp [available on internet at www.phoslock.com.au/docs2/5%20-%20Eco-Toxicity%20Report%20by%20NIWA,%20August%202004.pdf].

  • Cooke, D. G., E. B. Welch, S. A. Peterson & S. A. Nichols, 2005. Restoration and Management of Lakes and Reservoirs. CRC Press, Boca Raton: 616 pp.

  • Egemose, S., K. Reitzel, F. Ø. Andersen & M. R. Flindt, 2010. Chemical lake restoration products: sediment stability and phosphorus dynamics. Environmental Science and Technology 44: 985–991.

    Article  CAS  PubMed  Google Scholar 

  • Gächter, R. & B. Müller, 2003. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnology and Oceanography 48: 929–933.

    Article  Google Scholar 

  • Gibbs, M. & D. Özkundakci, 2010. Effects of a modified zeolite on P and N processes and fluxes across the lake sediment–water interface using core incubations. Hydrobiologia: doi:10.1007/s10750-009-0071-8.

  • Havens, K. E., R. T. James, T. L. East & V. H. Smith, 2003. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution 122: 379–390.

    Article  CAS  PubMed  Google Scholar 

  • Hickey, C. W. & M. M. Gibbs, 2009. Lake sediment phosphorus release management—decision support and risk assessment framework. Journal of Marine and Freshwater Research 43: 819–856.

    Article  CAS  Google Scholar 

  • Hupfer, M. & J. Lewandowski, 2008. Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. International Review of Hydrobiology 93: 415–432.

    Article  CAS  Google Scholar 

  • Lewis, W. M. & W. A. Wurtsbaugh, 2008. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. International Review of Hydrobiology 93(4–5): 446–465.

    Google Scholar 

  • Lürling, M. & Y. Tolman, 2010. Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna. Water Research 44: 309–319.

    Article  PubMed  Google Scholar 

  • McCarthy, M. J., W. S. Gardner, P. J. Lavrentyev, K. M. Moats, F. J. Jochem & D. M. Klarer, 2007. Effects of hydrological flow regime on sediment-water interface and water column nitrogen dynamics in a Great Lakes coastal wetland (Old Woman Creek, Lake Erie). Journal of Great Lakes Research 33: 219–231.

    Article  CAS  Google Scholar 

  • Mortimer, C. H., 1971. Chemical exchanges between sediments and water in the Great Lakes—speculations on probable regulatory mechanisms. Limnology and Oceanography 16: 387–404.

    Article  CAS  Google Scholar 

  • Motion, O. J., 2007. Pore water chemistry and early diagenesis in sediments of Lake Rotorua, New Zealand. Unpublished MSc Thesis, University of Waikato, Hamilton, New Zealand [available on internet at http://hdl.handle.net/10289/2381].

  • Nguyen, L. & C. Tanner, 1998. Ammonium removal from wastewaters using natural New Zealand zeolites. New Zealand Journal of Agricultural Research 41: 427–446.

    Article  CAS  Google Scholar 

  • NICNAS, 2001. NA/899: Full Public Report: Lanthanum modified clay. Accessed 6 July 2001 [available on internet at http://www.nicnas.gov.au/publications/CAR/new/NA/NAFULLR/NA0800FR/NA899FR.pdf].

  • Pablo, F., M. Julli, R. Patra, R. Sunderam, T. Manning, J. Chapman & N. Sargent, 2009. Toxicity of Phoslock a lanthanum-based clay product to fish and cladoceran. Australasian Society for Ecotoxicology, Adelaide, Australia, 20–23 September, 2009. Poster paper.

  • Pascoe, D., S. A. Evans & J. Woodworth, 1986. Heavy metal toxicity to fish and the influence of water hardness. Archives of Environmental Contamination and Toxicology 15: 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, L. K., 2007. The nature, composition and distribution of sediment in Lake Rotorua, New Zealand. MSc Thesis, University of Waikato: 486 pp.

  • Persy, V. P., G. J. Behets, A. R. Bervoets, M. E. Broe & P. C. D’Haese, 2006. Lanthanum: a safe phosphate binder. Seminars in Dialysis 19: 195–199.

    Article  PubMed  Google Scholar 

  • Peterson, S. A., W. D. Sanville, E. S. Stay & C. F. Powers, 1976. Laboratory evaluation of nutrient inactivation compounds for lake restoration. Journal of the Water Pollution Control Federation 48: 817–831.

    CAS  Google Scholar 

  • Redfield, A., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.

    CAS  Google Scholar 

  • Robb, M., B. Greenop, Z. Goss, G. Douglas & J. A. Adeney, 2003. Application of Phoslock™, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings. Hydrobiologia 494: 237–243.

    Article  CAS  Google Scholar 

  • Schindler, D. W., R. E. Hecky, D. L. Findlay, et al., 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254–11258.

    Article  CAS  Google Scholar 

  • Smolders, A. J. P., L. P. M. Lamers, E. C. H. E. T. Lucasseu, G. van der Velde & J. G. M. Roelops, 2006. Internal eutrophication: how it works and what to do about it—a review. Chemistry and Ecology 22: 93–111.

    Article  CAS  Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509: 135–145.

    Article  Google Scholar 

  • Spears, B. M., L. Carvalho & D. M. Paterson, 2007. Phosphorus partitioning in a shallow lake: implications for water quality management. Water and Environment Journal 21: 47–53.

    Article  CAS  Google Scholar 

  • Timperley, M. H., 1983. Phosphorus in the spring waters of the Taupo Volcanic Zone, North Island, New Zealand. Chemical Geology 38: 287–306.

    Article  CAS  Google Scholar 

  • Timperley, M. H. & R. J. Vigor-Brown, 1986. Water chemistry of lakes in the Taupo Volcanic Zone, New Zealand. New Zealand Journal of Marine and Freshwater Research 20: 173–183.

    Article  CAS  Google Scholar 

  • Vopel, K., M. Gibbs, C. W. Hickey & J. Quinn, 2008. Modification of sediment–water solute exchange by sediment-capping materials: effects on O2 and pH. Marine and Freshwater Research 59: 1101–1110.

    Article  CAS  Google Scholar 

  • Welch, E. B., 2009. Should nitrogen be reduced to manage eutrophication if it is growth limiting? Evidence from Moses Lake. Lake and Reservoir Management 25: 401–409.

    Article  Google Scholar 

  • Welch, E. B. & G. D. Cooke, 1999. Effectiveness and longevity of phosphorus inactivation with alum. Lake and Reservoir Management 15: 5–27.

    Article  CAS  Google Scholar 

  • Welch, E. B. & G. D. Schrieve, 1994. Alum treatment effectiveness and longevity in shallow lakes. Hydrobiologia 275(276): 423–431.

    Article  Google Scholar 

  • White, E., K. Law, G. Payne & S. Pickmere, 1985. Nutrient demand and availability among planktonic communities—an attempt to assess nutrient limitation to plant growth in 12 central volcanic plateau lakes. New Zealand Journal of Marine and Freshwater Research 19: 49–62.

    Article  CAS  Google Scholar 

  • Yamada, H., M. Kayama, K. Saito & M. Hara, 1987. Suppression of phosphate liberation from sediment by using iron slag. Water Research 21: 325–333.

    Article  CAS  Google Scholar 

  • Yuan, G. & L. Wu, 2007. Allophane nanoclay for the removal of phosphorus in water and waste water. Science and Technology of Advanced Materials 8: 60–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank D. Bremner, M. van Kooten, B. Hughes and K. Farnsworth for collecting the sediment and hundreds of litres of lake water, assistance with set up and daily sampling of the incubation chambers over the 90 day experiment, G. Bryers for the rapid analytical turn around of the thousand or more water samples produced during this study, and K. Rutherford for valuable discussion during the preparation of this manuscript. This study was funded by the Foundation for Research Science and Technology (FRST) contract CO1X0305, ‘Restoration of aquatic ecosystems’ and Environment Bay of Plenty under their programme for restoration of the Te Arawa/Rotorua Lakes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max M. Gibbs.

Additional information

Handling editor: P. Nõges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbs, M.M., Hickey, C.W. & Özkundakci, D. Sustainability assessment and comparison of efficacy of four P-inactivation agents for managing internal phosphorus loads in lakes: sediment incubations. Hydrobiologia 658, 253–275 (2011). https://doi.org/10.1007/s10750-010-0477-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0477-3

Keywords

Navigation