Skip to main content

Advertisement

Log in

Obligate groundwater fauna of France: diversity patterns and conservation implications

  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

We examined taxonomic and geographic patterns of the obligate groundwater fauna (i.e. stygobiotic fauna) by assembling in a distributional data base all species occurrences reported from France since 1805. A simulated annealing algorithm was used to identify conservation targets. Until the 60s, biological surveys were restricted to caves but the proportion of sampling sites in unconsolidated sediments increased from 1 to 16% over the last 40 years. A total of 380 species and subspecies in 40 families were collected, 70% of which being restricted to France. As observed in other temperate regions, the stygobiotic fauna was dominated by crustaceans (65% of species) and molluscs (22%). The cumulative number of species did not level off over time, clearly showing that biodiversity was underestimated. Temporal trends in the cumulative number of obligate groundwater and surface water species suggested that groundwater comprised more crustaceans than surface freshwater. Endemism was high although the geographic range size of species increased as distributional data accumulated. Of 380 species, 156 were known from a single 400-km2 cell, among which 73% were located in the southern third of France. The distribution map of species richness changed dramatically over time, indicating that the location of richness hotspots was sensitive to sampling effort. Less than 2% of the French landscape was needed to capture 60% of known species. Thus, a large proportion of species could be protected by focusing habitat conservation efforts on a few complementary species-rich aquifers located in distinct regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apostolov A. (2002). Copépodes Harpacticoïdes stygobies de France. 1. Le genre Ceuthonectes Chappuis, 1924 avec la description de deux espéces nouvelles. Crustaceana 75: 777–790

    Article  Google Scholar 

  • Ball J.R. and Possingham H.P. (2001). The design of marine protected areas: adapting terrestrial techniques. In: Ghassemi, F., Whetton, P., Little, R. and Littleboy, M. (eds) Proceedings of the International Congress on Modelling and Simulation, Natural Systems, pp 769–774. The Modelling and Simulation Society of Australia and New Zealand Inc, Canberra, Australia

    Google Scholar 

  • Bellés X. (1992). From dragons to allozymes. A brief account on the history of biospeleology. In: Camacho, A.I. (eds) The Natural History of Biospeleology, pp 3–24. Monografias del Museo National de Ciencias Naturales, vol. 7, Madrid

    Google Scholar 

  • Botosaneanu L. 1986. Stygofauna MundiBrill, E.J. and Dr W. Backhuys Leiden, The Netherlands.

  • Bouchet P. (1990). La malacofaune française: endémismepatrimoine naturel et protection. Rev. d’Ecol. 45: 259–288

    Google Scholar 

  • Cobolli-Sbordoni M., Mattocia M., La Rosa G., Sbordoni V. and Matthaeis E. (1990). Secondary sympatric occurrence of sibling species of subterranean shrimps in the karst. Int. J. Speleol. 19: 9–27

    Google Scholar 

  • Coineau N. (1971). Les Isopodes interstitiels. Documents sur leurécologie et leur biologie. Mémoires du Muséum National d’Histoire Naturelle, Paris

    Google Scholar 

  • Csuti B., Polasky S., Williams P.H., Pressey R.L., Camm J.D., Kershaw M., Kiester A.R., Downs B., Hamilton R., Huso M. and Sahr K. (1997). A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon. Biol. Conserv. 80: 83–97

    Article  Google Scholar 

  • Culver D.C., Christman M.C., Master L.L. and Hobbs H.H. (1999). Distribution map of caves and cave animals in the United States. J. Cave Karst Stud. 61: 139–140

    Google Scholar 

  • Culver D.C., Master L.L., Christman M.C. and Hobbs H.H. (2000). Obligate cave fauna of the 48 contiguous United States. Conserv. Biol. 14: 386–401

    Article  Google Scholar 

  • Culver D.C. and Sket B. (2000). Hotspots of subterranean biodiversity in caves and wells. J. Cave Karst Stud. 62: 11–17

    Google Scholar 

  • Culver D.C., Christman M.C., Sket B. and Trontelj P. (2004). Sampling adequacy in an extreme environment; species richness patterns in Slovenian caves. Biodivers. Conserv. 13: 1209–1229

    Article  Google Scholar 

  • Danielopol D.L., Pospisil P. and Rouch R. (2000). Biodiversity in groundwater: a large-scale view. Trends Ecol. Evol. 15: 223–224

    Article  PubMed  Google Scholar 

  • Danielopol D.L., Griebler C., Gunatilaka A. and Notenboom J. (2003). Present state and future prospects for groundwater ecosystems. Environ. Conserv. 30: 104–130

    Article  CAS  Google Scholar 

  • Ferreira D., Dole-Olivier M.-J., Malard F., Deharveng L. and Gibert J. (2003). Faune aquatique souterraine de France: base de données et éléments de biogéographie. Karstologia 42: 15–22

    Google Scholar 

  • Galassi D.M.P., Dole-Olivier M.-J. and Laurentiis P. (1999). Nitocrellopsis rouchi sp. n., a new ameirid harpacticoid from phreatic waters in France (Copepoda: Harpacticoida: Ameiridae). Hydrobiologia 412: 177–189

    Article  Google Scholar 

  • Galassi D.M.P. (2001). Groundwater Copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 453/454: 227–253

    Article  Google Scholar 

  • Gaston K.J. (1991). How large is a species geographic range?. Oikos 61: 434–438

    Article  Google Scholar 

  • Gaston K.J. and May R.M. (1992). Taxonomy of taxonomists. Nature 356: 281–282

    Article  Google Scholar 

  • Gaston K.J., Pressey R.L. and Margules C.R. (2002). Persistence and vulnerability: retaining biodiversity in the landscape and in protected areas. J. BioSci. Suppl. 27: 361–384

    CAS  Google Scholar 

  • Gèze B. (1973). Lexique des termes français de spéléologie physique et de karstologie. Ann. Spéléol. 28: 1–20

    Google Scholar 

  • Giani N., Sambugar B., Rodriguez P. and Martínez-Ansemil E. (2001). Oligochaetes in southern European groundwater: new records and an overview. Hydrobiologia 463: 64–74

    Article  Google Scholar 

  • Gibert J., Danielopol D.L. and Stanford J.A (1994). Groundwater Ecology. Academic Press, New York

    Google Scholar 

  • Gibert J., Malard F., Turquin M.-J. and Laurent R. (2000). Karst ecosystems in the Rhône River basin. In: Wilkens, H., Culver, D.C., and Humphreys, W.F. (eds) Subterranean Ecosystems. Ecosystems of the World 30, pp 533–558. Elsevier, Amsterdam

    Google Scholar 

  • Gibert J. (2001). Protocols for the assessment and conservation of aquatic life in the subsurface (PASCALIS): a European Project. In: Culver, D.C., Deharveng, L., Gibert, J. and Sasowsky, I.D. (eds) Mapping Subterrenean Biodiversity/Cartographie de la biodiversité souterraine, Proceedings of the International Workshop held, 18–20 March 2001, pp 19–21. Laboratoire Souterrain du CNRS, Moulis, Ariége, France. Karst Waters Institute, Special Publication 6, Charles Town, West Virginia

    Google Scholar 

  • Gibert J. and Deharveng L. (2002). Subterranean ecosystems: a truncated functional biodiversity. BioScience 52: 473–481

    Article  Google Scholar 

  • Ginet R. 1971. Biogeographic de Niphargus et Caecosphaerom (Crustacés troglobies) dans les départements français du Jura et de l’Ain Origine; influence des glaciations. Proceedings of the 4th Swiss Congress of Speleology, Neuchâtel, Switzerland, 26–27 September 1970, pp. 186–198.

  • Ginet R. and Juberthie C. (1987). Le peuplement animal des karsts de France. I. La faune aquatique. Karstologia 10: 43–51

    Google Scholar 

  • Gottstein-Matočec S., Bakran-Petricioli T., Bedek J., Bukovec D., Buzjak S., Franičević M., Jalžić B., Kerovec M., Kletečki E., Kralj J., Kružić P., Kučinić M., Kuhta M., Matočec N., Ozimec R, Tonći R., Štamol V., Ternjej I. and Tvrtković N. (2002). An overview of the cave and interstitial biota of Croatia. Nat. Croatica 11: 1–112

    Google Scholar 

  • Henry J.-P. 1976.Recherches sur les Asellidae hypogés de la lignée cavaticus (Crustacea Isopoda Asellota). Ph.D. thesis, University of Dijon, France.

  • Holsinger J.R., Mort J.W. and Recklies A.D. (1983). The subterranean crustacean fauna of Castle guard Cave, Columbia Icefields, Alberta, Canada, and its zoogeographic significance. Arctic Antarctic Alpine Res. 15: 543–549

    Article  Google Scholar 

  • Holsinger J.R. (1993). Biodiversity of subterranean amphipod crustaceans: global patterns and zoogeographic implications. J. Nat. Hist. 27: 821–835

    Article  Google Scholar 

  • Holsinger J.R. (2000). Ecological derivation, colonization and speciation. In: Wilkens, H., Culver, D.C. and Humphreys, W.F. (eds) Subterranean Ecosystems, pp 399–415. Ecosystems of the World 30, Elsevier, Amsterdam

    Google Scholar 

  • Humphreys W.F. (2000). Relict faunas and their derivation. In: Wilkens, H., Culver, D.C. and Humphreys, W.F. (eds) Subterranean Ecosystems, pp 417–432. Ecosystems of the World 30, Elsevier, Amsterdam

    Google Scholar 

  • Juberthie C. and Juberthie-Jupeau L. (1975). La réserve biologique du laboratoire souterrain du CNRS à Sauve (Gard). Aiulales Spéléol. 30: 539–551

    Google Scholar 

  • Juberthie C. and Decu V. 1994. Encyclopaedia Biospeleogica I, Société de Biospéléologie. Moulis – Bucarest.

  • Juberthie C. and Ginet R. (1994). France. In: Juberthie, C. and Decu, V. (eds) Encyclopoedia Biospeleogica I, Société de Biospéologie, pp 665–692. Moulis, Bucarest

    Google Scholar 

  • Juberthie C. (1995). Underground Habitats and their Protection. Nature and Environment, 72. Council of Europe, Strasbourg

    Google Scholar 

  • Juberthie C. and Decu V. 1998. Encyclopaedia Biospeleogica II, Société de Biospéléologie. Moulis – Bucarest.

  • Juberthie C. and Decu V. 2001. Encyclopaedia Biospeleogica III, Société de Biospéléologie. Moulis – Bucarest.

  • Ketmaier V., Messana G., Cobolli M., Argano R. and Matthaeis E. (2000). Biochemical biogeography and evolutionary relationships among the six known populations of Stenasellus racovitzai (Crustacea, Isopoda) from Tuscany, Corsica and Sardinia. Arch. Hydrobiol. 147: 297–309

    Google Scholar 

  • Langecker T.G. (2000). The effects of continuous darkness on cave ecology and cavernicolous evolution. In: Wilkens, H., Culver, D.C. and Humphreys, W.F. (eds) Subterranean Ecosystems, pp 135–157. Ecosystems of the World 30, Elsevier, Amsterdam

    Google Scholar 

  • Lescher-Moutoué F. (1967). Notes sur la biogéographic et les biotopes du genre Speocyclops dans la région pyrénéenne. Spelunca Mémoires 5: 277–284

    Google Scholar 

  • Mace G.M. (2000). It’s time to work together and stop duplicating conservation efforts. Nature 405: 393

    Article  PubMed  CAS  Google Scholar 

  • Magniez G. (1976). Contribution à la connaissance de la biologie des Stenasellidae (Crustacea Isopoda Asellota des eaux souterraines). University of Dijon, France

    Google Scholar 

  • Malard F., Gibert J. and Laurent R. (1997). L’aquifère de la source du Lez: un réservoir d’eau et de biodiversité. Karstologia 30: 49–54

    Google Scholar 

  • Magniez G. 1997. Facteurs intrinsèques et extrinsèques de la distribution actuelle des Crustacés Isopodes des eaux souterraines d’Europe. Proceedings of the 12th International Congress of Speleology, La Chaux-de-Fonds, Switzerland, 10–17 August 1997, pp. 341–344

  • Malard F., Plénet S. and Gibert J. (1996). The use of invertebrates in groundwater monitoring: a rising research field. Ground Water Monitor. Remediat. 16: 103–116

    Article  CAS  Google Scholar 

  • Margules C.R., Pressey R.L. and Williams P.H. (2002). Representing biodiversity: data and procedures for identifying priority areas for conservation. J. BioSci. Suppl. 27: 309–326

    CAS  Google Scholar 

  • Marmonier P., Vervier P., Gibert J. and Dole-Olivier M.-J. (1993). Biodiversity in ground waters. Trends Ecol. Evol. 8: 392–395

    Article  Google Scholar 

  • Martínez-Ansemil E., Sambugar B. and Giani N. (1997). Groundwater Oligochaetes from Southern-Europe. I. A new genus and three new species of Rhyacodrilinae (Tubificidae) with a redescription of Tubifex pescei (Dumnicka) comb. n. Ann. Limnol. 33: 33–44

    Article  Google Scholar 

  • Mösslacher F. and Notenboom J. (2000). Groundwater biomonitoring. In: Gerhardt, A. (eds) Biomonitoring of Polluted Water, pp 119–140. Trans Tech Publications Ltd, Zürich, Switzerland

    Google Scholar 

  • Nelson B.W., Ferreira C.A.C., Kawasaki M.L. and Silva M.F. (1990). Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature 345: 714–716

    Article  Google Scholar 

  • Notenboom J., Plénet S. and Turquin M.-J. (1994). Groundwater contamination and its impact on groundwater animals and ecosystems. In: Gibert, J., Danielopol, D.L., and Stanford, J.A. (eds) Groundwater Ecology, pp 477–504. Academic Press, New York

    Google Scholar 

  • Oliver J.H.J. (1988). Crisis in biosystematics of Arthropods. Science 240: 967

    Article  PubMed  Google Scholar 

  • Possingham H., Ball I. and Andelman S. (2000). Mathematical methods for identifying representative reserve networks. In: Ferson, S. and Burgman, M. (eds) Quantitative Methods for Conservation Biology, pp 291–305. Springer-Verlag, New York

    Chapter  Google Scholar 

  • Racovitza E.G. (1907). Essai sur les problèmes biospéologiques. Arch. Zool. Exp. Générale 6: 371–488

    Google Scholar 

  • Reddy S. and Dávalos L.M. (2003). Geographical sampling bias and its implications for conservation priorities in Africa. J. Biogeogr. 30: 1719–1727

    Article  Google Scholar 

  • Reid J.W. 1992. Taxonomic problems: a serious impediment to groundwater ecological research in North America. Proceedings of the First International Conference on Ground Water Ecology, U.S. Environmental Protection Agency, Tampa, Florida, 26–29 April 1992, pp. 133–142

  • Rouch R. (1968). Contribution à la connaissance des Harpacticides hypogés (Crustacés - Copépodes). Ann. Spéléol. 23: 5–167

    Google Scholar 

  • Rouch R. (1986). Sur l’écologie des eaux souterraines dans le karst. Stygologia 2: 352–398

    Google Scholar 

  • Rouch R. (1988). Sur la répartition spatiale des Crustacés dans le sous-écoulement d’un ruisseau des Pyrénées. Ann. Limnol. 24: 213–234

    Google Scholar 

  • Rouch R., Pitzalis A. and Descouens A. (1993). Effets de pompage à gros débit sur le peuplement des Crustacés d’un aquifere karstique. Ann. Limnol. 29: 15–29

    Article  Google Scholar 

  • Sket B. (1999a). High biodiversity in hypogean waters and its endangerment. The situation in Slovenia, the Dinaric karsts. and Europe. Crustaceana 72: 767–780

    Article  Google Scholar 

  • Sket B. (1999b). The nature of biodiversity in hypogean waters and how it is endangered. Biodiver. Conserv. 8: 1319–1338

    Article  Google Scholar 

  • Spangler P.J. and Decu V. (1998). Coleoptera Aquatica. In: Juberthie, C. and Decu, V. (eds) Encyclopoedia Biospeleogica II, pp 1031–1046. Société de Biospéologie, Moulis, Bucarest

    Google Scholar 

  • Stewart R.R., Noyce T. and Possingham H.P. (2003). Opportunity cost of ad hoc marine reserve design decisions: an example from South Australia. Mar. Ecol. Prog. Ser. 253: 25–38

    Google Scholar 

  • Stoch F. (1995). The ecological and historical determinants of Crustacean diversity in groundwaters, or: why are there so many species?. Mémoires Biospéléol. 22: 139–160

    Google Scholar 

  • Stoch F. (2000). How many endemic species? Species richness assessment and conservation priorities in Italy. Belg. J. Entomol. 2: 125–133

    Google Scholar 

  • Stoch F. 2001. Mapping subterranean biodiversity : structure of the databasemapping software (CKMAP), and a report of status for Italy. In: Culver D.C., Deharveng L., Gibert J. and SasowskyI.D. (eds), Mapping Subterrenean Biodiversity/Cartographie de la biodiversité souterraine. Proceedings of the International Workshop held18–20 March 2001, Laboratoire Souterrain du CNRS, Moulis, Ariège, FranceKarst Waters Institute, Special Publication 6, Charles Town, West Virginia, pp. 29–35

  • Strayer D.L., May S.E., Nielsen P., Wollheim W. and Hausam S. (1995). An endemic groundwater fauna in unglaciated eastern North America. Can. J. Zool. 73: 502–508

    Article  Google Scholar 

  • IUCN 2004. 2004 IUCN Red List of Threatened Species. http://www.iucnredlist.org. Downloaded on 10 November 2004.

  • Valdecasas A.G. and Camacho A.I. (2003). Conservation to the rescue of taxonomy. Biodivers. Conserv. 12: 1113–1117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, D., Malard, F., Dole-Olivier, MJ. et al. Obligate groundwater fauna of France: diversity patterns and conservation implications. Biodivers Conserv 16, 567–596 (2007). https://doi.org/10.1007/s10531-005-0305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-005-0305-7

Keywords

Navigation