Skip to main content

Advertisement

Log in

Perkinsozoa, a well-known marine protozoan flagellate parasite group, newly identified in lacustrine systems: a review

  • DISREGARDED DIVERSITY AND ECOLOGICAL POTENTIALS
  • Review Article
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The recurrent detection of parasitic zoospores among aquatic heterotrophic flagellates (HFs) has recently modified our view of how the microbial loop is organized, and called into question the role of eukaryotic parasites in the aquatic trophic food web. The Perkinsozoa group, already known to play a significant role as parasite in marine systems, is of special interest here, since it has recently been detected in several lakes by constructing clone libraries. In marine systems, this group is known to consist solely of intracellular parasites of molluscs or phytoplanktonic species, but their hosts in freshwater environments are still unknown, and little is yet known about their functional importance in planktonic systems. This review summarizes the main information currently available about Perkinsozoa through a description of their phylogenetic position, their life cycles, and regulatory factors, and the consideration of the specificities of their hosts in marine systems, and the few data recently acquired in lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abollo, E., S. M. Casas, G. Ceschia & A. Villalba, 2006. Differential diagnosis of Perkinsus species by polymerase chain reaction-restriction fragment length polymorphism assay. Molecular and Cellular Probes 20: 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Arias-Gonzáles, J. E. & S. Morand, 2006. Trophic functioning with parasites: a new insight for ecosystem analysis. Marine Ecology Progress Series 320: 43–53.

    Article  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Azevedo, C., 1989. Fine structure of Perkinsus atlanticus n. sp. (Apicomplexa, Perkinsea) parasite of the clam Ruditapes decussatus from Portugal. Journal of Parasitology 75: 627–635.

    CAS  PubMed  Google Scholar 

  • Bettarel, Y., C. Amblard, T. Sime-Ngando, J. F. Carrias, D. Sargos, F. Garabetian & P. Lavandier, 2003. Viral lysis, flagellate grazing potential and bacterial production in Lake Pavin. Microbial Ecology 45: 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Bettarel, Y., T. Sime-Ngando, C. Amblard & J. Dolan, 2004. Viral activity in two contrasting lake ecosystems. Applied and Environmental Microbiology 70: 2941–2951.

    Article  CAS  PubMed  Google Scholar 

  • Blackbourn, J., S. M. Bower & G. R. Meyer, 1998. Perkinsus qugwudi sp. nov. (incertae sedis), a pathogenic protozoan parasite of Japanese scallops, Patinopecten yessoensis, cultured in British Columbia, Canada. Canadian Journal of Zoology 76: 942–953.

    Article  Google Scholar 

  • Brugerolle, G., 2002. Cryptophagus subtilis: a new parasite of cryptophytes affiliated with the Perkinsozoa lineage. European Journal of Protistology 37: 379–390.

    Article  Google Scholar 

  • Brugerolle, G., 2003. Apicomplexan parasite Cryptophagus renamed Rastrimonas gen. nov. European Journal of Protistology 39: 101.

    Article  Google Scholar 

  • Brussaard, C. P. D., 2004. Viral control of phytoplankton populations – a review. The Journal of Eukaryotic Microbiology 51: 125–138.

    Article  PubMed  Google Scholar 

  • Burreson, E. M., R. S. Alvarez, V. Vidal, M. Leopoldina & A. Macedo, 1994. Perkinsus marinus (Apicomplexa) as a potential source of oyster Crassostrea virginica mortality in coastal lagoons of Tabasco, Mexico. Diseases of Aquatic Organisms 20: 73–82.

    Article  Google Scholar 

  • Bushek, D., C. F. Dungan & A. J. Lewitus, 2002. Serological affinities of the Oyster Pathogen Perkinsus marinus (Apicomplexa) with some dinoflagellates (Dinophyceae). The Journal of Eukaryotic Microbiology 49: 11–16.

    Article  PubMed  Google Scholar 

  • Cáceres-Martínez, J., R. Vásquez-Yeomans, G. Padilla-Lardizábal, M. A. del Río & Portilla., 2008. Perkinsus marinus in pleasure oyster Crassostrea corteziensis from Nayarit, Pacific coast of México. Journal of Invertebrate Pathology 99: 66–73.

    Article  PubMed  Google Scholar 

  • Canter, H. M. & J. W. G. Lund, 1969. The parasitism of planktonic desmids by Fungi. Plant Systematics and Evolution 116: 351–377.

    Article  Google Scholar 

  • Casas, S. M., K. S. Reece, Y. Li, J. A. Moss, A. Villalba & J. F. La Peyre, 2008. Continuous culture of Perkinsus mediterraneus, a parasite of the European Flat Oyster Ostrea edulis, and characterization of its morphology, propagation, and extracellular proteins in vitro. The Journal of Eukaryotic Microbiology 55: 34–43.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T., 1993. Kingdom protozoa and its 18 phyla. Microbiological Reviews 57: 953–994.

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. & E. Y. Chao, 2003. Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154: 341–358.

    Article  PubMed  Google Scholar 

  • Chambouvet, A., P. Morin, D. Marie & L. Guillou, 2008. Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322: 1254–1257.

    Article  CAS  PubMed  Google Scholar 

  • Cole, J. J., 1982. Interactions between bacteria and algae in aquatic ecosystems. Annual Review of Ecology, Evolution and Systematics 13: 291–314.

    Article  Google Scholar 

  • Coss, C. A., J. A. F. Robledo & G. R. Vasta, 2001. Fine structure of clonally propagated in vitro life stages of a Perkinsus sp. isolated from the Baltic Clam Macoma balthica. The Journal of Eukaryotic Microbiology 48: 38–51.

    Article  CAS  PubMed  Google Scholar 

  • Delgado, M. & A. P. Camacho, 2007. Influence of temperature on gonadal development of Ruditapes philippinarum (Adams and Reeve, 1850) with special reference to ingested food and energy balance. Aquaculture 264: 398–407.

    Article  Google Scholar 

  • Díez, B., C. Pedrós-Alió, T. L. Marsh & R. Massana, 2001. Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Applied in Environmental Microbiology 67: 2942–2951.

    Article  Google Scholar 

  • Elandaloussi, L. M., N. Carrasco, A. Roque, K. Andree & M. D. Furones, 2009. First record of Perkinsus olseni, a protozoan parasite infecting the commercial clam Ruditapes decussatus in Spanish Mediterranean waters. Journal of Invertebrate Pathology 100: 50–53.

    Article  PubMed  Google Scholar 

  • Embley, T. M., B. J. Finlay, R. H. Thomas & P. L. Dyal, 1992. The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus pdueformis and its archaeobacterial endosymbiont. Journal of General Microbiology 138: 1479–1487.

    CAS  PubMed  Google Scholar 

  • Erard-Le Denn, E., M. J. Chrétiennot-Dinet & I. Probert, 2000. First report of parasitism on the toxic Dinoflagellate Alexandrium minutum Halim. Estuarine, Coastal and Shelf Science 50: 109–113.

    Article  Google Scholar 

  • Fernández-Robledo, J. A., E. J. Schott & G. R. Vasta, 2008. Perkinsus marinus superoxide dismutase 2 (PmSOD2) localizes to single-membrane subcellular compartments. Biochemical and Biophysical Research Communications 375: 215–219.

    Article  PubMed  Google Scholar 

  • Figueroa, R. I., E. Garcés, R. Massana & J. Camp, 2008. Description, host-specificity, and strain selectivity of the dinoflagellate parasite Parvilucifera sinerae sp. nov. (Perkinsozoa). Protist 159: 563–578.

    Article  PubMed  Google Scholar 

  • Fuhrman, J. A., 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399: 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Gestal, C., B. Novoa, D. Posada, A. Figueras & C. Azevedo, 2006. Perkinsoide chabelardi n. gen., a protozoan parasite with an intermediate evolutionary position: possible cause of the decrease of sardine fisheries? Environmental Microbiology 8: 1105–1114.

    Article  PubMed  Google Scholar 

  • Gisselson, L. A., P. Carlsson, E. Granéli & J. Pallon, 2002. Dinophysis blooms in the deep euphotic zone of the Baltic Sea: do they grow in the dark? Harmful Algae 1: 401–418.

    Article  Google Scholar 

  • Gullian-Klanian, M., J. A. Herrera-Silveira, R. Rodriguez-Canul & L. Aguirre-Macedo, 2008. Factors associated with the prevalence of Perkinsus marinus in Crassostrea virginica from the southern Gulf of Mexico. Diseases of Aquatic Organisms 79: 237–247.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, S., 1960. Physiology of aquatic fungi: nutrition of two monocentric chytrids. Journal of Bacteriology 80: 701–707.

    CAS  PubMed  Google Scholar 

  • Groisillier, A., R. Massana, K. Valentin, D. Vaulot & L. Guillou, 2006. Genetic diversity and habitats of two enigmatic marine alveolate lineages. Aquatic Microbial Ecology 42: 277–291.

    Article  Google Scholar 

  • Guillou, L., M. Viprey, A. Chambouvet, R. M. Welsh, A. R. Kirkham, R. Massana, D. J. Scanlan & A. Z. Worden, 2008. Occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environmental Microbiology 10: 3349–3365.

    Article  CAS  PubMed  Google Scholar 

  • Hakimi, M. A. & K. W. Deitsch, 2007. Epigenetics in Apicomplexa: control of gene expression during cell cycle progression, differentiation and antigenic variation. Current Opinion in Microbiology 10: 357–362.

    Article  CAS  PubMed  Google Scholar 

  • Holfeld, H., 1998. Fungal infections of the phytoplankton: seasonality, minimal host density, and specificity in a mesotrophic lake. New Phytologist 138: 507–517.

    Article  Google Scholar 

  • Ibelings, B. W., A. De Bruin, M. Kagami, M. Rijkeboer, M. Brehm & E. Van Donk, 2004. Review: host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). Journal of Phycology 40: 437–453.

    Article  Google Scholar 

  • Johansson, M. & D. W. Coats, 2002. Ciliate grazing on the parasite Amoebophrya sp. decreases infection of the red-tide dinoflagellate Akashiwo sanguinea. Aquatic Microbial Ecology 28: 69–78.

    Article  Google Scholar 

  • Kagami, M., E. Van Donk, A. De Bruin, M. Rijkeboer & B. W. Ibelings, 2004. Daphnia can protect diatoms from fungal parasitism. The American Society of Limnology and Oceanography 49: 680–685.

    Article  Google Scholar 

  • Kagami M., N. R. Helmsing & E. van Donk, 2010. Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms. Hydrobiologia. doi:10.1007/s10750-010-0274-z.

  • Lafferty, K. D., A. P. Dobson & A. M. Kuris, 2006. Parasites dominate food web links. PNAS 103: 11211–11216.

    Article  CAS  PubMed  Google Scholar 

  • Lafferty, K. D., S. Allesina, M. Arim, C. J. Briggs, G. De Leo, A. P. Dobson, J. A. Dunne, P. T. J. Johnson, A. M. Kuris, D. J. Marcogliese, N. D. Martinez, J. Memmott, P. A. Marquet, J. P. McLaughlin, E. A. Mordecai, M. Pascual, R. Poulin & D. W. Thieltges, 2008. Parasites in food webs: the ultimate missing links. Ecology Letters 11: 533–546.

    Article  PubMed  Google Scholar 

  • Leander, B. S. & P. J. Keeling, 2003. Morphostasis in alveolate evolution. Trends in Ecology and Evolution 18: 395–402.

    Article  Google Scholar 

  • Leander, B. S. & M. Hoppenrath, 2008. Ultrastructure of a novel tube-forming, intracellular parasite of dinoflagellates: Parvilucifera prorocentri sp. nov. (Alveolata, Myzozoa). European Journal of Protistology 44: 55–70.

    Article  PubMed  Google Scholar 

  • Lefèvre, E., C. Bardot, C. Noël, J. F. Carrias, E. Viscogliosi, C. Amblard & T. Simé-Ngando, 2007. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environmental Microbiology 9: 61–71.

    Article  PubMed  Google Scholar 

  • Lefèvre, E., B. Roussel, C. Amblard & T. Simé-Ngando, 2008. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE 3: 2324–2333.

    Article  Google Scholar 

  • Lefranc, M., A. Thénot, C. Lepère & D. Debroas, 2005. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Applied in Environmental Microbiology 71: 5935–5942.

    Article  CAS  Google Scholar 

  • Lepère, C., D. Boucher, L. Jardillier, I. Domaizon & D. Debroas, 2006. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Applied in Environmental Microbiology 72: 2971–2981.

    Article  Google Scholar 

  • Lepère, C., I. Domaizon & D. Debroas, 2008. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Applied in Environmental Microbiology 74: 2940–2949.

    Article  Google Scholar 

  • Lester, R. J. G., C. L. Goggin & K. B. Sewell, 1990. Perkinsus in Australia. In Cheng, T. C. & F. O. Perkins (eds), Pathology in Marine Aquaculture. Academic Press, New York: 189–199.

    Google Scholar 

  • Levine, N. D., 1978. Perkinsus gen. n. and other new taxa in the protozoan phylum Apicomplexa. Journal of Parasitology 64: 549.

    Google Scholar 

  • Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, B. Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode & K. H. Schleifer, 2004. ARB: a software environment for sequence data. Nucleic Acids Research 32: 1363–1371.

    Article  CAS  PubMed  Google Scholar 

  • Mackin, J. G., 1951. Histopathology of infection of Crassostrea virginica Gmelin by Dermocystidium marinum Mackin, Owen and Collier. Bulletin of Marine Science of the Gulf and Caribbean 1: 72–87.

    Google Scholar 

  • Mackin, J. G. & S. M. Ray, 1966. The taxonomic relationships of Dermocystidium marinum Mackin. Owen and Collier. Journal of Invertebrate Pathology 8: 544–545.

    Article  Google Scholar 

  • Mackin, J. G., H. M. Owen & A. Collier, 1950. Preliminary note on the occurrence of a new protistan parasite, Dermocystidium marinum n. sp. in Crassostrea virginica (Gmelin). Science 111: 328–329.

    Article  CAS  PubMed  Google Scholar 

  • Mangot, J. F., C. Lepère, C. Bouvier, D. Debroas & I. Domaizon, 2009. Community structure and dynamics of small eukaryotes (<5 μm) targeted by new oligonucleotide probes: a new insight into the lacustrine microbial food web. Applied in Environmental Microbiology 75: 6373–6381.

    Article  CAS  Google Scholar 

  • Moore, R. B., M. Obornik, J. Janouskovec, T. Chrudimsky, M. Vancova, D. H. Green, S. W. Wright, N. W. Davies, C. J. Bolch, K. Heimann, J. Slapeta, O. Hoegh-Guldberg, J. M. Logsdon & D. A. Carter, 2008. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451: 959–963.

    Article  CAS  PubMed  Google Scholar 

  • Moreira, D. & P. Lόpez-García, 2002. The molecular ecology of microbial eukaryotes unveils a hidden world. Trends in Microbiology 10: 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Ngo, T. T. T. & K. S. Choi, 2004. Seasonal changes of Perkinsus and Cercaria infections in the Manila clam Ruditapes philippinarum from Jeju, Korea. Aquaculture 239: 57–68.

    Article  Google Scholar 

  • Norén, F., O. Moestrup & A. S. Rehnstam-Holm, 1999. Parvilucifera infectans Norén et Moestrup gen. et sp. nov. (Perkinsozoa phylum nov.): a parasitic flagellate capable of killing toxic microalgae. European Journal of Protistology 35: 233–254.

    Google Scholar 

  • Oborník, M., J. Janouskovec, T. Chrudimsky & J. Lukes, 2009. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. International Journal for Parasitology 39: 1–12.

    Article  PubMed  Google Scholar 

  • Ordas, M. C. & A. Figueras, 1998. In vitro culture of Perkinsus atlanticus, a parasite of the carpet shell clam Ruditapes decussatus. Diseases of Aquatic Organisms 33: 129–136.

    Article  Google Scholar 

  • Park, M. G., S. K. Cooney, W. Yih & D. W. Coats, 2002. Effects of two strains of the parasitic dinoflagellate Amoebophrya on growth, photosynthesis, light absorption, and quantum yield of bloom-forming dinoflagellates. Marine Ecology Progress Series 227: 281–292.

    Article  Google Scholar 

  • Park, M. G., W. Yih & D. W. Coats, 2004. Parasites and phytoplankton, with special emphasis on dinoflagellate infections. The Journal of Eukaryotic Microbiology 51: 144–155.

    Article  Google Scholar 

  • Park, K. I., T. T. T. Ngo, S. D. Choi, M. Cho & K. S. Choi, 2006. Occurrence of Perkinsus olseni in the Venus clam Protothaca jedoensis in Korean waters. Journal of Invertebrate Pathology 93: 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Reece, K. S., M. E. Siddall, E. M. Burreson & J. E. Graves, 1997. Phylogenetic analysis of Perkinsus based on actin gene sequences. Journal of Parasitology 83: 417–423.

    Article  CAS  PubMed  Google Scholar 

  • Richards, T. A., A. A. Vepritskiy, D. E. Gouliamova & S. A. Nierzwicki-Bauer, 2005. The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environmental Microbiology 7: 1413–1425.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, R. W., K. G. Porter, S. J. Bennet & A. E. DeBiase, 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans. Limnology and Oceanography 34: 673–687.

    Article  Google Scholar 

  • Siddall, M. E., K. S. Reece, J. E. Graves & E. M. Burreson, 1997. “Total evidence” refutes the inclusion of Perkinsus species in the phylum Apicomplexa. Parasitology 115: 165–167.

    Article  PubMed  Google Scholar 

  • Soniat, T. M., 1996. Epizootiology of Perkinsus marinus disease of eastern oysters in the Gulf of México. The Journal of Shellfish Research 15: 35–43.

    Google Scholar 

  • Soudant, P., F. L. E. Chu & E. D. Lund, 2005. Assessment of the cell viability of cultured Perkinsus marinus (Perkinsea), a parasitic protozoan of the Eastern Oyster, Crassostrea virginica, using SYBRgreen–propidium iodide double staining and flow cytometry. The Journal of Eukaryotic Microbiology 52: 492–499.

    Article  PubMed  Google Scholar 

  • Teles-Grilo, M. L., J. Tato-Costa, S. M. Duarte, A. Maia, G. Casal & C. Azevedo, 2007. Is there a plastid in Perkinsus atlanticus (Phylum Perkinsozoa)? European Journal of Protistology 43: 163–167.

    Article  PubMed  Google Scholar 

  • Weinbauer, M. G., 2004. Ecology of prokaryotic viruses. FEMS Microbiology Reviews 28: 127–181.

    Article  CAS  PubMed  Google Scholar 

  • Wommack, K. E. & R. R. Colwell, 2000. Virioplankton: viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews 64: 69–114.

    Article  CAS  PubMed  Google Scholar 

  • Zingone, A. & H. O. Enevoldsen, 2000. The diversity of harmful algal blooms: a challenge for science and management. Ocean & Coastal Management 43: 725–748.

    Article  Google Scholar 

  • Zwart, G., B. C. Crump, M. P. Kamst-van Agterveld, F. Hagen & S. K. Han, 2002. Typical freshwater bacteria: an analysis of available 16S rNRA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology 28: 141–155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Mangot.

Additional information

Guest editors: T. Sime-Ngando & N. Niquil / Disregarded Microbial Diversity and Ecological Potentials in Aquatic Systems

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangot, JF., Debroas, D. & Domaizon, I. Perkinsozoa, a well-known marine protozoan flagellate parasite group, newly identified in lacustrine systems: a review. Hydrobiologia 659, 37–48 (2011). https://doi.org/10.1007/s10750-010-0268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0268-x

Keywords

Navigation