Skip to main content
Log in

Molecular evidence for the presence of cryptic evolutionary lineages in the freshwater copepod genus Hemidiaptomus G.O. Sars, 1903 (Calanoida, Diaptomidae)

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The pattern of morphological and mtDNA cytochrome b diversity of three calanoid copepod species belonging to the diaptomid genus Hemidiaptomus has been investigated with the aim of checking the reliability of the morphological characters currently used for species identification, and the possible presence of cryptic taxa. A sharply different molecular structuring has been observed in the studied species: while Hemidiaptomus amblyodon exhibits a remarkable constancy throughout the European range of its distribution area (maximum inter-populations cytochrome b divergence of 3%), observed distances between presumed conspecific lineages of Hemidiaptomus gurneyi (maximum divergence of 21.5%) and Hemidiaptomus ingens (maximum 19.1%) suggest that under these binomens are in fact included complexes of cryptic, or currently just unrecognized, independent evolutionary lineages. The application of the “4x rule” shows that the two lineages singled out within H. ingens are in fact independent evolutionary units, while the complex molecular structure observed in H. gurneyi s.l. could not be resolved based on the currently available data. Applying standard crustacean mtDNA evolutionary rates to the observed divergence values, the separation of the main lineages within both H. ingens and H. gurneyi might dates back to the Miocene; however, it has also to be considered that the rate of mtDNA evolution might be accelerated in copepods, as already observed in other arthropod taxa. Present results gives further evidences of the high potential for copepod speciation with no or little morphological changes, and stress the need of a revision of the most controversial Palaearctic diaptomid genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamowicz, S. J., S. Menu-Marque, P. D. N. Hebert & A. Purvis, 2007. Molecular systematics and patterns of morphological evolution in the Centropagidae (Copepoda: Calanoida) of Argentina. Biological Journal of the Linnean Society 90: 279–292.

    Article  Google Scholar 

  • Alonso, M., 1998. Las lagunas de la Espaňa peninsular. Limnetica 15: 1–176.

    Google Scholar 

  • Bennike, O., 1998. Fossil egg sacs of Diaptomus (Crustacea: Copepoda) in Late Quaternary lake sediments. Journal of Paleolimnology 19: 77–79.

    Article  Google Scholar 

  • Birky, C. W. Jr. & T. Barraclough, 2010. Asexual Speciation. In Schon, I., K. Martens, & P. van Dijk (eds), Lost Sex. Springer, New York: 201–216.

  • Birky, C. W. Jr., C. Wolf, H. Maughan, L. Herbertson & E. Henry, 2005. Speciation and selection without sex. Hydrobiologia 546: 29–45.

    Article  CAS  Google Scholar 

  • Birky, C. W. Jr., J. Adams, M. Gemmel & J. Perry, 2010. Using Population genetic theory and DNA sequences for species detection and identification in asexual organisms. PLoS One. (in press).

  • Bohonak, A. J., M. D. Holland, B. Santer, M. Zeller, C. M. Kearns & N. G. Hairston, 2006. The population genetic consequences of diapause in Eudiaptomus copepods. Archiv für Hydrobiologie 167: 183–202.

    Article  CAS  Google Scholar 

  • Boileau, M. G., 1991. A genetic determination of cryptic species (Copepoda: Calanoida) and their postglacial biogeography in North America. Zoological Journal of the Linnean Society 102: 375–396.

    Article  Google Scholar 

  • Borutzky, E. B., L. A. Stepanova & M. S. Koss, 1991. Opredelitel’ Calanoida presnykh vod SSSR. Nauka, St. Petersburg.

    Google Scholar 

  • Bucklin, A. & B. W. Frost, 2009. Morphological and molecular phylogenetic analysis of evolutionary lineages within Clausocalanus (Copepoda: Calanoida). Journal of Crustacean Biology 29: 111–120.

    Article  Google Scholar 

  • Cáceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.

    Article  Google Scholar 

  • Costa, F. O., J. R. de Waard, J. Boutillier, S. Ratnasingham, R. T. Dooh, M. Hajibabaei & P. D. N. Hebert, 2007. Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272–295.

    Article  CAS  Google Scholar 

  • De Queiroz, K., 2005. Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Science 102: 6600–6607.

    Article  CAS  Google Scholar 

  • De Queiroz, K., 2007. Species concepts and species delimitation. Systematic Biology 56: 879–886.

    Article  PubMed  Google Scholar 

  • De Stasio, B. T., 1989. The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology 70: 1377–1389.

    Article  Google Scholar 

  • Dimentman, C. & F. D. Por, 1985. Diaptomidae (Copepoda) of Israel and Northern Sinai. Hydrobiologia 127: 89–95.

    Article  Google Scholar 

  • Dussart, B. & D. Defaye, 2001. Introduction to the Copepoda, 2nd edn. Backhuys Publishers, Leiden.

    Google Scholar 

  • Dussart, B. & D. Defaye, 2002. World Directory of Crustacea Copepoda of Inland Waters, I—Calaniformes. Backhuys Publishers, Leiden.

    Google Scholar 

  • Einsle, U., 1993. Crustacea Copepoda. Calanoida und Cyclopoida. Süsswasserfauna Mitteleuropas 8/4-1, Gustav Fisher Verlag.

  • Elias-Gutierrez, M., F. M., Jeronimo, N. V., Ivanova, M. Valdez-Moreno & P. D. N. Hebert, 2008. DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries. Zootaxa 1839: 1–42.

    Google Scholar 

  • Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.

    Article  Google Scholar 

  • Gauthier, H., 1928. Recherches sur la faune des eaux continentales de l’Algérie et de la Tunisie. Imprimerie Minerva, Alger.

    Google Scholar 

  • Graham, T. B. & D. Wirth, 2008. Dispersal of large branchiopod cysts: potential movement by wind from potholes. Hydrobiologia 600: 17–27.

    Article  Google Scholar 

  • Grant, W. S. & B. W. Bowen, 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. The Journal of Heredity 89: 415–426.

    Article  Google Scholar 

  • Grishanin, A. K., E. M. Rasch, S. I. Dodson & G. A. Wyngaard, 2006. Genetic architecture of the cryptic species complex of Acanthocyclops vernalis (Crustacea: Copepoda). II. Crossbreeding experiments, cytogenetics, and a model of chromosomal evolution. Evolution 60: 247–256.

    CAS  PubMed  Google Scholar 

  • Guindon, S. & O. Gascuel, 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52: 696–704.

    Article  PubMed  Google Scholar 

  • Hey, J., 2006. On the failure of modern species concepts. Trends in Ecology and Evolution 21: 447–450.

    Article  PubMed  Google Scholar 

  • Hewitt, G., 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B 359: 183–195.

    Article  CAS  Google Scholar 

  • Huys, R. & G. A. Boxshall, 1991. Copepod Evolution. The Ray Society, London.

    Google Scholar 

  • Kiefer, F., 1954. Freilebende Ruderfusskrebse (Crustacea Copepoda) aus Binnengewaessern Marokkos. Bulletin de la Société des Sciences Naturelles et Physiques du Maroc 34: 317–336.

    Google Scholar 

  • Kiefer, F., 1973. Zur Kenntnis der roubaui-Gruppe der Gattung Hemidiaptomus G. O. Sars (Copepoda). Crustaceana 25: 281–291.

    Article  Google Scholar 

  • Kiefer, F., 1978. Das Zooplankton der Binnengewaesser. Freilebende Copepoda. Die Binnengewaesser, 26/2. E. Schweizerbart’sche Verlagbuchhandlung, Stuttgart.

    Google Scholar 

  • Lee, C. E., 2000. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate ‘populations’. Evolution 54: 2014–2027.

    Article  CAS  PubMed  Google Scholar 

  • Machida, R. J., M. U. Miya, M. Nishida & S. Nishida, 2004. Large-scale gene rearrangements in the mitochondrial genomes of two calanoid copepods Eucalanus bungii and Neocalanus cristatus (Crustacea), with notes on new versatile primers for the srRNA and COI genes. Gene 332: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Marrone, F. & L. Naselli-Flores, 2004. First record and morphological features of Hemidiaptomus (Occidodiaptomus) ingens (Gurney, 1909) (Copepoda Calanoida) in Italy. Journal of Limnology 63: 250–255.

    Google Scholar 

  • Marszalek, M. A., S. Dayanandan & E. J. Maly, 2009. Phylogeny of the genus Hesperodiaptomus Copepoda based on nucleotide sequence data of the nuclear ribosomal gene. Hydrobiologia 624: 61–69.

    Article  CAS  Google Scholar 

  • Merrit, T. J. S., L. Shi, M. C. Chase, M. A. Rex, R. J. Etter & J. M. Quattro, 1998. Universal cytochrome b primers facilitate intraspecific studies in molluscan taxa. Molecular Marine Biology and Biotechnology 7: 7–11.

    Google Scholar 

  • Papadopoulos, L. N., K. T. C. A. Peijnenburg & P. C. Luttikhuizen, 2005. Phylogeography of the calanoid copepods Calanus helgolandicus and C. euxinus suggests Pleistocene divergences between Atlantic, Mediterranean, and Black Sea populations. Marine Biology 147: 1353–1365.

    Article  Google Scholar 

  • Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  • Roy, J. & H. Gauthier, 1927. Sur les copépodes d’Algérie et Tunisie (eaux douces et eaux saumâtres). Bulletin de la Société Zoologique de France 52: 558–575.

    Google Scholar 

  • Schmitt, T., 2007. Molecular biogeography of Europe Pleistocene cycles and postglacial trends. Frontiers in Zoology 4: 11. doi:10.1186/1742-9994-4-11

    Article  PubMed  Google Scholar 

  • Stella, E., 1984. Copepoda: Calanoida. Fauna d’Italia, vol 21, Ed. Calderini, Bologna.

  • Stepanova, L. A., 2005. Composition of the genus Hemidiaptomus: identification of Gigantodiaptomus and Occidodiaptomus (Crustacea, Diaptomidae) as independent genera. Zoologicheskii Zhurnal 84: 754–760.

    Google Scholar 

  • Steward, J. R. & A. M. Lister, 2001. Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution 16: 608–613.

    Article  Google Scholar 

  • Swofford, D. L., 1998. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24: 4876–4882.

    Article  Google Scholar 

  • Thum, R. A., 2004. Using 18S rDNA to resolve diaptomid copepod (Copepoda: Calanoida: Diaptomidae) phylogeny: an example with the North American genera. Hydrobiologia 519: 135–141.

    Article  CAS  Google Scholar 

  • Thum, R. A. & A. M. Derry, 2008. Taxonomic implications for diaptomid copepods based on contrasting patterns of mitochondrial DNA sequence divergences in four morphospecies. Hydrobiologia 614: 197–207.

    Article  CAS  Google Scholar 

  • Thum, R. A. & R. G. Harrison, 2009. Deep genetic divergences among morphologically similar and parapatric Skistodiaptomus (Copepoda: Calanoida: Diaptomidae) challenge the hypothesis of Pleistocene speciation. Biological Journal of the Linnean Society 96: 150–165.

    Article  Google Scholar 

  • Zeller, M., T. B. H. Reusch & W. Lampert, 2006. A comparative population genetic study on calanoid freshwater copepods: investigation of isolation-by-distance in two Eudiaptomus species with a different potential for dispersal. Limnology and Oceanography 51: 117–124.

    Article  Google Scholar 

Download references

Acknowledgments

Bill Birky (University of Arizona, Tucson) provided a much appreciated support with the implementation of the “4x rule” and sensibly improved a former draft of the manuscript with his constructive criticism. The friends and colleagues listed in Table 1 generously provided the Hemidiaptomus samples included in this study, and they are gratefully acknowledged for their support. Research supported by “Fondi di Ateneo - Università di Palermo”. This research has been carried out as a part of the PhD of FM at the Department of Animal Biology of the University of Palermo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Arculeo.

Additional information

Handling editor: K. Martens

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrone, F., Brutto, S.L. & Arculeo, M. Molecular evidence for the presence of cryptic evolutionary lineages in the freshwater copepod genus Hemidiaptomus G.O. Sars, 1903 (Calanoida, Diaptomidae). Hydrobiologia 644, 115–125 (2010). https://doi.org/10.1007/s10750-010-0101-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0101-6

Keywords

Navigation