Skip to main content

Advertisement

Log in

Invertebrate communities in dry-season pools of a large subtropical river: patterns and processes

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Dynamics of flooding and drying resulting in fragmentation of lotic habitats are a yearly phenomenon in subtropical floodplain rivers but their ecological significance is not known for invertebrate communities. We studied the response of zooplankton and macroinvertebrate communities in 48 dry-season river pools in the Save-Runde river system (Lowveld, Zimbabwe). Patterns and ecological processes influencing invertebrate communities, taxon richness and macroinvertebrate functional richness were investigated with focus on the role of regional (connectivity) and local processes (habitat characteristics). Local factors accounted for 15% of the variability in the zooplankton community but only 3.4% for the macroinvertebrate community. Important factors affecting zooplankton densities in the pools were depth, vegetation cover and presence of fish (planktivorous and omnivorous). The presence of fish in pools can infer predation risk. Macroinvertebrate abundances were affected by the presence of fish only. Zooplankton densities increased in pools with fish while macroinvertebrate densities declined in the presence of fish. Macroinvertebrates could exert top-down pressure on zooplankton either by competition for resources or predation in pools. Regional factors significantly explained zooplankton but not macroinvertebrate community variability. Connectivity had no significant effect on local pool habitat characteristics. There were no significant differences in water quality variables between flowing river sites and the pools. Zooplankton and macroinvertebrate α- and γ-diversity in dry-season pools was higher than in the flowing river. Species additions rather than species replacements by processes that include dispersal and possibly dormancy may explain increased zooplankton and macroinvertebrate taxon diversity in pools. Functional feeding group (FFG) analysis showed that the proportion of macroinvertebrate predator taxa increased significantly in pools compared to the flowing river. Pools create a more suitable and diverse habitat for these widely dispersing taxa. The other FFG were comparable between the river and pools. The pools are strongly heterotrophic. Our results confirm that habitat fragmentation may actually be beneficial for zooplankton and macroinvertebrate biodiversity in dryland rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Åbjörnsson, K., C. Brönmark & L. A. Hansson, 2002. The relative importance of lethal and non-lethal effects of fish on insect colonization of ponds. Freshwater Biology 47: 1489–1495.

    Article  Google Scholar 

  • Acuna, V., I. Munoz, A. Giorgi, M. Omella, F. Sabater & S. Sabater, 2005. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24: 919–993.

    Article  Google Scholar 

  • Arthington, A. H., S. R. Balcombe, G. A. Wilson, M. C. Thomas & J. Marshall, 2005. Spatial and temporal variation in fish-assemblage structure in isolated waterholes during the 2001 dry season of an arid-zone floodplain river, Cooper Creek, Australia. Marine and Freshwater Research 56: 25–35.

    Article  Google Scholar 

  • Aspetsberger, F., F. Huber, S. Kargl, B. Scharinger, P. Peduzzi & T. Hein, 2002. Particulate organic matter dynamics in a river floodplain system: impact of hydrological connectivity. Archiv für Hydrobiologie 156: 23–42.

    Article  CAS  Google Scholar 

  • Bailey, R. C., R. H. Norris & T. B. Reynoldson, 2001. Taxonomic resolution of benthic macroinvertebrate communities in bioassessments. Journal of the North American Benthological Society 20: 280–286.

    Article  Google Scholar 

  • Batzer, D. P., C. R. Pusateri & R. Vetter, 2000. Impacts of fish predation on marsh invertebrates: direct and indirect effects. Wetlands 20: 307–312.

    Article  Google Scholar 

  • Batzer, D. P., B. J. Palik & R. Buech, 2004. Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota. Journal of the North American Benthological Society 23: 50–68.

    Article  Google Scholar 

  • Bohonak, A. J. & D. A. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.

    Article  Google Scholar 

  • Bournaud, M., B. Cellot, P. Richoux & A. Berrahou, 1996. Macroinvertebrate community structure and environmental characteristics along a large river: congruity of patterns for identification to species or family. Journal of the North American Benthological Society 15: 232–253.

    Article  Google Scholar 

  • Bowman, M. F. & R. C. Bailey, 1997. Does taxonomic resolution affect the multivariate description of the structure of freshwater benthic macroinvertebrate communities? Canadian Journal of Fisheries and Aquatic Science 54: 1802–1807.

    Article  Google Scholar 

  • Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.

    Article  Google Scholar 

  • Brönmark, C. & L. A. Hansson, 1998. The Biology of Lakes and Ponds. Oxford University Press, Oxford.

    Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  • Bunn, S. E., M. C. Thoms, S. K. Hamilton & S. J. Capon, 2006. Flow variability in dryland rivers: boom, bust and the bits in between. River Research and Applications 22: 179–186.

    Article  Google Scholar 

  • Chakona, A., B. Marshall & L. Brendonck, 2007. The effect of fish predation on benthic macroinvertebrates in a seasonal stream in north-western Zimbabwe. African Journal of Aquatic Science 32: 251–257.

    Article  Google Scholar 

  • Chakona, A., C. Phiri, C. H. D. Magadza & L. Brendonck, 2008. The influence of habitat structure and flow permanence on macroinvertebrate assemblages in temporary rivers in north-western Zimbabwe. Hydrobiologia 607: 199–209.

    Article  Google Scholar 

  • Chapman, L. J., K. R. Schneider, C. Apodaca & C. A. Chapman, 2004. Respiratory ecology of macroinvertebrates in a swamp-river system of East Africa. Biotropica 36: 572–585.

    Google Scholar 

  • Cottenie, K. & L. De Meester, 2003. Connectivity and cladoceran species richness in a metacommunity of shallow lakes. Freshwater Biology 48: 823–832.

    Article  Google Scholar 

  • Cottenie, K. & L. De Meester, 2004. Metacommunity structure: synergy of biotic interactions as selective agents and dispersal as fuel. Ecology 85: 114–119.

    Article  Google Scholar 

  • Croft, P. S., 1986. A key to the major groups of British freshwater invertebrates. Field Studies 6: 531–579.

    Google Scholar 

  • Cummins, K. W., R. W. Merritt & P. C. N. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment 40: 69–89.

    Article  Google Scholar 

  • Davies, B. & J. Day, 1998. Vanishing Waters. University of Cape Town Press, Cape Town, Republic of South Africa.

    Google Scholar 

  • De Bie, T., S. Declerck, K. Martens, L. De Meester & L. Brendonck, 2008. A comparative analysis of cladoceran communities from different water body types: patterns in community composition and diversity. Hydrobiologia 597: 19–27.

    Article  Google Scholar 

  • De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The monopolisation hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23: 121–135.

    Article  Google Scholar 

  • Dole-Olivier, M. J., D. M. P. Galassi, P. Marmonier & M. Creuzé des Châteliers, 2000. The biology and ecology of lotic microcrustaceans. Freshwater Biology 44: 63–91.

    Article  Google Scholar 

  • DR/2010 Spectrophotometer Procedures Manual, 2000. HACH company, USA.

  • Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annual Reviews of Ecology and Evolutionary Systematics 34: 487–515.

    Article  Google Scholar 

  • Fenoglio, S., P. Agosta, T. Bo & M. Cucco, 2002. Field experiments on colonization and movements of stream invertebrates in an Apennine river (Visone, NW Italy). Hydrobiologia 474: 125–130.

    Article  Google Scholar 

  • Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.

    Article  Google Scholar 

  • Flöβner, D., 2000. Die Haplopoda und Cladocera Mitteleuropas. Backhuys Publishers, Leiden.

    Google Scholar 

  • Fonnesu, A., L. Sabetta & A. Basset, 2005. Factors affecting macroinvertebrate distribution in a Mediterranean intermittent stream. Journal of Freshwater Ecology 20: 641–647.

    Google Scholar 

  • Forbes, A. E. & J. M. Chase, 2002. The role of habitat connectivity and landscape geometry in experimental zooplankton metacommunities. Oikos 96: 433–440.

    Article  Google Scholar 

  • Gerber, A. & M. J. M. Gabriel, 2002. Aquatic Invertebrates of South African Rivers—Field Guide. Institute for Water Quality Studies, Department of Water Affairs and Forestry, Pretoria, Republic of South Africa: 150 pp.

    Google Scholar 

  • Gooderham, J. & E. Tsyrlin, 2002. The Waterbug Book: A Guide to the Freshwater Macroinvertebrates of Temperate Australia. CSIRO Publishing, Collingwood.

    Google Scholar 

  • Havel, J. E., E. M. Eisenbacher & A. A. Black, 2000. Diversity of crustacean zooplankton in riparian wetlands: colonization and egg banks. Aquatic Ecology 34: 63–76.

    Article  Google Scholar 

  • Hawking, J. H., L. M. Smith & K. Le Busque, 2006. Identification and ecology of Australian freshwater invertebrates. www.mdfrc.org.au/bugguide.

  • Heino, J., 2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology 50: 1578–1587.

    Article  Google Scholar 

  • Hewlett, R., 2000. Implications of taxonomic resolution and sample habitat for stream classification at a broad geographic scale. Journal of the North American Benthological Society 19: 352–361.

    Article  Google Scholar 

  • Holyoak, M., M. A. Leibold, N. Mouquet, R. D. Holt & M. F. Hoopes, 2005. Metacommunities: A Framework for Large-scale Community Ecology. In Holyoak, M., M. A. Leibold & R. D. Holt (eds), Metacommunities: Spatial Dynamics and Ecological Communities. University of Chicago Press, Chicago: 1–30.

    Google Scholar 

  • Jack, J. D., W. Fang & J. H. Thorp, 2006. Vertical, lateral and longitudinal movement of zooplankton in a large river. Freshwater Biology 51: 1646–1654.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publications of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Kay, W. R., S. A. Halse, M. D. Scanlon & M. J. Smith, 2000. Distribution and environmental tolerances of aquatic macroinvertebrate families in the agricultural zone of southwestern Australia. Journal of the North American Benthological Society 20: 182–199.

    Article  Google Scholar 

  • Kořínek, V., 1999. A guide to limnetic species of Cladocera of African inland waters (Crustacean, Branchiopod). Occasional Publication S.I.L. 1: 1–58.

    Google Scholar 

  • Kovats, Z. E., J. J. H. Ciborowski & L. D. Corkum, 1996. Inland dispersal of adult aquatic insects. Freshwater biology 36: 265–276.

    Article  Google Scholar 

  • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.

    Article  Google Scholar 

  • Lancaster, J. & A. L. Robertson, 2006. Microcrustacean prey and macroinvertebrate predators in a stream food web. Freshwater Biology 34: 123–134.

    Article  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Lepš, J. & T. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lieschke, J. A. & J. P. Closs, 1999. Regulation of zooplankton composition and distribution by a zooplanktivorous fish in a shallow, eutrophic floodplain lake in south east Australia. Archiv für Hydrobiologie 146: 397–412.

    Google Scholar 

  • Louette, G. & L. De Meester, 2005. High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology 86: 353–359.

    Article  Google Scholar 

  • Mackay, R. J., 1992. Colonization by lotic macroinvertebrates: A review of processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 49: 617–628.

    Article  Google Scholar 

  • Marchese, M. & I. Ezcurra de Drago, 1992. Benthos of the lotic environments in the middle Parana River system: transverse zonation. Hydrobiologia 237: 1–13.

    Article  CAS  Google Scholar 

  • McMahon, T. A. & B. L. Finlayson, 2003. Droughts and anti-droughts: the low-flow hydrology of Australian rivers. Freshwater Biology 48: 1147–1160.

    Article  Google Scholar 

  • Melo, A. S., 2000. Macroinvertebrates in neotropical streams: richness patterns along a catchment and assemblage structure between 2 seasons. Journal of the North American Benthological Society 20: 1–16.

    Article  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America, 3rd ed. Kendal/Hunt Publishing Company, Dubuque, USA.

    Google Scholar 

  • Newbold, J. D., J. W. Elwood, R. V. O’Neill & W. Van Winkle, 1981. Measuring nutrient spiralling in Streams. Canadian Journal of Fisheries and Aquatic Sciences 38: 860–863.

    Article  Google Scholar 

  • Nielsen, D. L., T. J. Hillman & F. J. Smith, 1999. Effects of hydrological variation and planktivorous competition on macroinvertebrate community structure in experimental billabongs. Freshwater Biology 42: 427–444.

    Article  Google Scholar 

  • Pringle, C., 2003. What is hydrologic connectivity and why is it ecologically important? Hydrological Processes 17: 2685–2689.

    Article  Google Scholar 

  • Puckridge, J. T., F. Sheldon, K. F. Walker & A. J. Boulton, 1998. Flow variability and the ecology of large rivers. Marine and freshwater research 49: 55–72.

    Article  Google Scholar 

  • Rayner, N. A. & H. Rayner, 1994. Distribution patterns of the Diaptomidae Calanoida: (Copepoda) in southern Africa. Hydrobiologia 272: 1–3.

    Article  Google Scholar 

  • Resh, V. H., L. A. Bêche & E. P. McElravy, 2005. How common are rare taxa in long-term benthic macroinvertebrate surveys? Journal of the North American Benthological Society 24: 976–989.

    Article  Google Scholar 

  • Rundle, S. D. & A. G. Hildrew, 1990. The distribution of micro-arthropods in some southern English streams: the influence of physicochemistry. Freshwater Biology 23: 411–431.

    Article  CAS  Google Scholar 

  • Rundle, S. D., A. Foggo, V. Choiseul & D. T. Bilton, 2002. Are distribution patterns linked to dispersal mechanism? An investigation using pond invertebrate assemblages. Freshwater Biology 47: 1571–1581.

    Article  Google Scholar 

  • Saunders, J. F. & W. M. Lewis Jr., 1988. Zooplankton abundance in the Caura River, Venezuela. Biotropica 20: 206–214.

    Article  Google Scholar 

  • Seaman, M. T., D. J. Kok & M. Watson, 1999. Cladocera. In Day, J. A., B. A. Stewart, I. J. de Moor & A. E. Louw (eds), Guides to the Freshwater Invertebrates of Southern Africa, Crustacea. Beria Printers, Pretoria.

    Google Scholar 

  • Shaffer, M., 1987. Minimum Viable Populations: Coping with Uncertainty. In Soulé, M. E. (ed.), Viable Populations for Conservation. Cambridge University Press, Cambridge: 69–86.

    Google Scholar 

  • Sheldon, F., A. J. Boulton & J. T. Puckridge, 2002. Conservation value of variable connectivity: aquatic invertebrate assemblages of channel and floodplain habitats of a central Australian arid-zone river, Cooper Creek. Biological Conservation 103: 13–31.

    Article  Google Scholar 

  • Shiozawa, D. K., 1991. Microcrustacea from the benthos of nine Minnesota streams. Journal of the North American Benthological Society 10: 286–299.

    Article  Google Scholar 

  • Shurin, J. B., 2001. Interactive effects of predation and dispersal on zooplankton communities. Ecology 82: 3404–3416.

    Google Scholar 

  • Skelton, P. H., 2001. A complete guide to the freshwater fishes of Southern Africa. Struik Publishers, South Africa.

    Google Scholar 

  • Thoms, M. C., 2003. Floodplain-river ecosystems: lateral connections and the implications of human interference. Geomorphology 56: 335–349.

    Article  Google Scholar 

  • Thorp, J. H. & S. Mantovani, 2005. Zooplankton in turbid and hydrologically dynamic prairie rivers. Freshwater Biology 50: 1474–1491.

    Article  Google Scholar 

  • Tockner, K. & J. A. Stanford, 2002. Riverine flood plains: present state and future trends. Environmental Conservation 29: 308–330.

    Article  Google Scholar 

  • Tockner, K., F. Malard & J. V. Ward, 2000. An extension of the flood pulse concept. Hydrological Processes 14: 2861–2883.

    Article  Google Scholar 

  • Tronstad, L. M., B. P. Tronstad & A. C. Benke, 2005. Invertebrate responses to decreasing water levels in a subtropical river floodplain wetland. Wetlands 25: 583–593.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vanschoenwinkel, B., A. Waterkeyn, T. Vandecaetsbeek, O. Pineau, P. Grillas & L. Brendonck, 2008. Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwater Biology 53: 2264–2273.

    Google Scholar 

  • Viroux, L., 1997. Zooplankton development in two large lowland rivers, the Moselle (France) and the Muese (Belgium), in 1993. Journal of Plankton Research 19: 1743–1762.

    Article  Google Scholar 

  • Wallace, B. J., 1990. Recovery of lotic macroinvertebrate communities from disturbance. Environmental Management 14: 605–620.

    Article  Google Scholar 

  • Wallace, B. J. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.

    Article  PubMed  CAS  Google Scholar 

  • Ward, J. V. & K. Tockner, 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46: 807–819.

    Article  Google Scholar 

  • Ward, J. V., K. Tockner & F. Scheimer, 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management 15: 125–139.

    Article  Google Scholar 

  • Williams, P., M. Whitfield, J. Biggs, S. Bray, G. Fox, P. Nicolet & D. Sear, 2003a. Comparative biodiversity of rivers, streams, ditches and ponds in agricultural landscape in southern England. Biological Conservation 115: 329–341.

    Article  Google Scholar 

  • Williams, L. R., C. M. Taylor & M. L. Warren Jr., 2003b. Influence of fish predation on assemblage structure of macroinvertebrates in an intermittent stream. Transactions of the American Fisheries Society 132: 120–130.

    Article  Google Scholar 

  • Wooster, D., 1994. Predator impacts on stream benthic prey. Oecologia 99: 7–15.

    Article  Google Scholar 

Download references

Acknowledgements

The research project was funded by VLIR through the institutional cooperation between the University of Zimbabwe and Katholieke Universiteit of Leuven. We extend our thanks to all our partners involved in the project, MSc students K. U. Leuven, MSc Tropical Hydrobiology and Fisheries programme students and technical staff (E. Munyoro and E. Holsters). We also express our gratitude to Dr A. Y. Sinev for advice on the cladoceran species determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamuka Nhiwatiwa.

Additional information

Handling editor: S. I. Dodson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nhiwatiwa, T., De Bie, T., Vervaeke, B. et al. Invertebrate communities in dry-season pools of a large subtropical river: patterns and processes. Hydrobiologia 630, 169–186 (2009). https://doi.org/10.1007/s10750-009-9790-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9790-0

Keywords

Navigation