Skip to main content
Log in

Unique habitat and macroinvertebrate assemblage structures in spring-fed stream: a comparison among clastic lowland tributaries and mainstreams in northern Japan

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

The stable flow and temperature regimes of spring-fed streams are distinct from the dynamic regimes of other streams. We investigated differences in habitat and macroinvertebrate assemblages among three stream types (spring-fed tributary, non-spring-fed tributary, and mainstream) in a clastic lowland of northern Japan. Current velocity was the slowest in the spring-fed reach, where the percent of fine sediment deposition was also 3.8–11.4 times higher than in the other stream types. The standing stock of detritus was also greater in the spring-fed reach. These results suggest that the stable flow regime in the spring-fed stream leads to the accumulation of fine sediment and detritus on the streambed. Oligochaeta and chironomids, which are burrower-gatherers, were remarkably abundant in the spring-fed reach. Total macroinvertebrate abundance was 3.8–12.2 times greater in the spring-fed reach than in the other stream types. Sprawler-grazer ephemeropterans were the most abundant in the mainstream reaches, likely due to higher primary productivity. Allomyia sp, which depend on cool spring-fed habitats, was found only in the spring-fed reach. The indicator species analysis also indicated multiple taxa of detritivores and Allomyia sp. for the spring-fed tributary. The macroinvertebrate assemblage in the spring-fed reach was characterized by numerous burrowers, collector-gatherers, and crenobiont taxa, highlighting the uniqueness and its contribution to enhance beta diversity in river networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Allan, J. D., & Castillo, M. M. (2007). Stream ecology: structure and function of running waters. (2nd ed.). Springer.

    Book  Google Scholar 

  • Bauman, D., Drouet, T., Fortin, M. J., & Dray, S. (2018a). Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology, 99, 2159–2166

    Article  PubMed  Google Scholar 

  • Bauman, D., Drouet, T., Dray, S., & Vleminckx, J. (2018b). Disentangling good from bad practices in the selection of spatial or phylogenetic eigenvectors. Ecography, 41, 1638–1649

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289–300

    Google Scholar 

  • Borcard, D., Gillet, F., & Legendre, P. (2018). Numerical ecology with R. (2nd ed.). Springer.

    Book  Google Scholar 

  • Cáceres, M. D., Jansen, F., & Dell, N. (2020). Package ‘indicspecies’. Retrieved from January 7, 2021 from https://cran.r-project.org/web/packages/indicspecies/.

  • Cantonati, M., Lang-Bertalot, H., Scalfi, A., & Angeli, N. (2010). Cymbella tridentina sp. nov. (Bacillariophyta), a crenophilous diatom from carbonate springs of the Alps. Journal of the North American Benthological Society, 29, 775–788

    Article  Google Scholar 

  • Cantonati, M., Füreder, L., Gerecke, R., Jüttner, I., & Cox, E. J. (2012). Crenic habitats, hotspots for freshwater biodiversity conservation: Toward an understanding of their ecology. Freshwater Science, 31, 463–480

    Article  Google Scholar 

  • Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8, 148–159

    Article  Google Scholar 

  • Davis, J. A., & Barmuta, L. A. (1989). An ecologically useful classification of mean and near-bed flows in streams and rivers. Freshwater Biology, 21, 271–282

    Article  Google Scholar 

  • Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., & Wagner, H. H. (2020). Package ‘adespatial’. Retrieved from January 7, 2021 from https://cran.r-project.org/web/packages/adespatial/.

  • Dray, S., Legendre, P., & Peres-Neto, P. R. (2006). Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196, 483–493

    Article  Google Scholar 

  • Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible assymetrical approach. Ecological Monographs, 67, 345–366

    Google Scholar 

  • Feminella, J. W., Power, M. E., & Resh, V. H. (1989). Periphyton responses to invertebrate grazing and riparian canopy in three northern California coastal streams. Freshwater Biology, 22, 445–457

    Article  Google Scholar 

  • Feminella, J. W., & Hawkins, C. P. (1995). Interactions between stream herbivores and periphyton: A quantitative analysis of past experiments. Journal of the North American Benthological Society, 14, 465–509

    Article  Google Scholar 

  • Fritz, K. M., & Dodds, W. K. (2004). Resistance and resilience of macroinvertebrate assemblages to drying and flood in a tallgrass prairie stream system. Hydrobiologia, 527, 99–112

    Article  Google Scholar 

  • Hill, W. R., Ryon, M. G., & Schilling, E. M. (1995). Light limitation in a stream ecosystem: Responses by primary producers and consumers. Ecology, 76, 1297–1309

    Article  Google Scholar 

  • Inoue, S., & Ishigaki, K. (1968). Notes on the biology of juvenile masu salmon (Oncorhynchus masou) during winter in the Chihase River, Hokkaido. Japanese Journal of Limnology, 29, 27–36 (in Japanese with English abstract).

    Article  Google Scholar 

  • Katagiri, K., Yabe, K., Nakamura, F., & Sakurai, Y. (2011). Factors controlling the distribution of aquatic macrophyte communities with special reference to the rapid expansion of a semi-emergent Phalaris arundinacea L. in Bibi River, Hokkaido, northern Japan. Limnology, 12, 175–185

    Article  Google Scholar 

  • Kawai, T., & Tanida, K. (2018). Aquatic insects of Japan: Manual with keys and illustrations. (2nd ed.). Tokai University Press.

    Google Scholar 

  • Kiffney, P. M., Richardson, J. S., & Feller, M. C. (2000). Fluvial and epilithic organic matter dynamics in headwater streams of southwestern British Columbia, Canada. Archiv Fur Hydrobiologie, 149, 109–129

    Article  CAS  Google Scholar 

  • Legendre, P. (2007). One-way anova with permutation test. Retrieved January 7, 2021 from http://adn.biol.umontreal.ca/~numericalecology/Rcode/.

  • Lusardi, R. A., Bogan, M. T., Moyle, P. B., & Dahlgren, R. A. (2016). Environment shapes invertebrate assemblage structure differences between volcanic spring-fed and runoff rivers in northern California. Freshwater Science, 35, 1010–1022

    Article  Google Scholar 

  • Mangiafico, S. (2020). Package ‘rcompanion’. Retrieved January 7, 2021 from https://cran.r-project.org/web/packages/rcompanion/.

  • Mattson, R. A., Epler, J. H., & Hein, M. K. (1995). Description of benthic communities in Karst, spring-fed streams of northern central Florida. Journal of the Kansas Entomological Society, 68, 18–41

    Google Scholar 

  • Merritt, R. W., Cummins, K. W., & Berg, B. (2008). An introduction to the aquatic insects of North America. (4th ed.). Kendall/Hunt Publishing Company.

    Google Scholar 

  • Milner, A. M., Brittain, J. E., Castella, E., & Petts, G. E. (2001). Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: A synthesis. Freshwater Biology, 46, 1833–1847

    Article  Google Scholar 

  • Ministry of the Environment, Japan (MOE). (2020). Portal site for conservation of springs. Retrieved January 7, 2021 from https://www.env.go.jp/water/yusui/ (in Japanese).

  • Miyazaki, Y., & Terui, Y. (2016). Temporal dynamics of fluvial fish community caused by marine amphidromous species in the Shubuto River, southwestern Hokkaido, Japan. Ichthyological Research, 63, 173–179

    Article  Google Scholar 

  • Nakagawa, H., Mishina, T., & Takemon, Y. (2015). Habitat use and nutritional conditions of ayu (Plecoglossus altivelis altivelis) in the lower reaches of the Kamo River, Kyoto, Japan. Ecology and Civil Engineering, 18, 53–63 (in Japanese with English abstract).

    Article  Google Scholar 

  • Nishimoto, H., & Kuhara, N. (2001). Revision of the caddisfly Allomyia Banks of Japan (Trichoptera: Apataniidae), with descriptions of seven new species. Entomological Science, 4, 157–174

    Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). Package ‘vegan’. Retrieved January 7, 2021 from https://cran.r-project.org/web/packages/vegan/.

  • Rabení, C. F., Doisy, K. E., & Zweig, L. D. (2005). Stream invertebrate community functional responses to deposited sediment. Aquatic Sciences, 67, 395–402

    Article  Google Scholar 

  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved January 7, 2021 from https://www.R-project.org/.

  • Reiss, M., Martin, P., Gerecke, R., & von Fumetti, S. (2016). Limno-ecological characteristics and distribution patterns of spring habitats and invertebrates from the Lowlands to the Alps. Environment and Earth Science, 75, 1033

    Article  Google Scholar 

  • Richards, C., & Bacon, K. L. (1994). Influence of fine sediment on macroinvertebrate colonization of surface and hyporheic stream substrates. Great Basin Naturalist, 54, 106–113

    Google Scholar 

  • Richards, K. S. (2004). Rivers: Form and process in alluvial channels. Blackburn Press

    Google Scholar 

  • Robinson, C. T., Aebischer, S., & Uehlinger, U. (2004). Immediate and habitat-specific responses of macronvertebrates to sequential, experimental floods. Journal of the North American Benthological Society, 23, 853–867

    Article  Google Scholar 

  • Sakai, M., Natuhara, Y., Fukushima, K., Naito, R., Miyashita, H., Kato, M., & Gomi, T. (2013). Responses of macroinvertebrate communities to 4 years of deer exclusion in first- and second-order streams. Freshwater Science, 32, 563–575

    Article  Google Scholar 

  • Sakai, M., Wakiya, R., & Hoshi, G. (2020). Spring-fed stream as a refugium: Temporal changes in fish assemblage before and after a rainfall event. bioRxiv. https://doi.org/10.1101/2020.04.26.062968

    Article  Google Scholar 

  • Sear, D. A., Armitage, P. D., & Dawson, F. H. (1999). Groundwater dominated rivers. Hydrological Processes, 13, 255–276

    Article  Google Scholar 

  • Sherwood, A. R., Rintoul, T. L., Müller, K. M., & Sheath, R. G. (2000). Seasonality and distribution of epilithic diatoms, macroalgae and macrophytes in a spring-fed stream system in Ontario, Canada. Hydrobiologia, 435, 143–152

    Article  Google Scholar 

  • Sueyoshi, M., Nakano, D., & Nakamura, F. (2014). The relative contributions of refugium types to the persistence of benthic invertebrates in a seasonal snowmelt flood. Freshwater Biology, 59, 257–271

    Article  Google Scholar 

  • Sun, Y., Takemon, Y., & Yamashiki, Y. (2020). Freshwater spring indicator taxa of benthic invertebrates. Ecohydrology and Hydrobiology, 20, 622–631

    Article  Google Scholar 

  • Takemon, Y. (2005). Life-type concept and functional feeding groups of benthos communities as indicators of lotic ecosystem conditions. Japanese Journal of Ecology, 55, 189–197 (in Japanese with English abstract).

    Google Scholar 

  • Takemon, Y. (2010). Benthos community structure and characteristics in Kakita River. In: Kakitagawa Ecosystem Workshop (Ed.), The nature of Kakita River (in Japanese).

  • Takenaka, A. (2009). CanopOn 2 program for analyzing hemispherical photographs. Retrieved January 7, 2021 from http://takenaka-akio.org/etc/canopon2/.

  • Terui, A., Ishiyama, N., Urabe, H., Ono, S., Finlay, J. C., & Nakamura, F. (2018). Metapopulation stability in branching networks. Proceedings of the National Academy of Sciences, 115, E5963–E5969

    Article  CAS  Google Scholar 

  • Uno, H., & Power, M. E. (2015). Mainstem-tributary linkages by mayfly migration help sustain salmonids in warming river networks. Ecology Letters, 18, 1012–1020

    Article  PubMed  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137

    Article  Google Scholar 

  • van Vliet, M. T. H., Franssen, W. H. P., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., & Kabat, P. (2013). Global river discharge and water temperature under climate change. Global Environmental Change, 23, 450–464

    Article  Google Scholar 

  • von Fumetti, S., Bieri-Wigger, F., & Nagel, P. (2017). Temperature variability and its influence on macroinvertebrate assemblages of alpine springs. Ecohydrology, 10, e1878

    Article  Google Scholar 

  • von Fumetti, S., & Blattner, L. (2017). Faunistic assemblages of natural springs in different areas in the Swiss National Park: a small-scale comparison. Hydrobiologia, 793, 175–184

    Article  Google Scholar 

  • White, J. C., House, A., Punchard, N., Hannah, D. M., Wilding, N. A., & Wood, P. J. (2018). Macroinvertebrate community responses to hydrological controls and groundwater abstraction effects across intermittent and perennial headwater streams. Science of the Total Environment, 610–611, 1514–1526

    Article  CAS  PubMed  Google Scholar 

  • Wigger, F. W., Schmidlin, L., Nagel, P., & von Fumetti, S. (2015). Macroinvertebrate assemblages of natural springs along an altitudinal gradient in the Bernese Alps, Switzerland. Annales de Limnologie-International Journal of Limnology, 51, 237–247

    Article  Google Scholar 

  • Wood, P. J., & Armitage, P. D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management, 21, 203–217

    Article  CAS  PubMed  Google Scholar 

  • Wood, P. J., Gunn, J., Smith, H., & Abas-Kutty, A. (2005). Flow permanence and macroinvertebrate community diversity within groundwater dominated headwater streams and springs. Hydrobiologia, 545, 55–64

    Article  Google Scholar 

  • Yin, J., Gentine, P., Zhou, S., Sullivan, S. C., Wang, R., Zhang, Y., & Guo, S. (2018). Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nature Communications, 9, 4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zweig, L. D., & Rabení, C. F. (2001). Biomonitoring for deposited sediment using benthic invertebrates: A test on 4 Missouri streams. Journal of the North American Benthological Society, 20, 643–657

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Izumi Washitani provided invaluable comments on the study plan. We thank the field assistance by Dr. Kosei Takahashi, Mr. Hitoshi Saito, Nobuo Hatai, and Kengo Ebihara.

Funding

A portion of this study was supported by JSPS KAKENHI Grant numbers 2629181 and 19K20491, and Kuromatsunai Biodiversity Conservation Research Grant (2017) to Masaru Sakai. David Bauman is supported by the Belgian American Educational Foundation.

Author information

Authors and Affiliations

Authors

Contributions

MS, KI, and DB conceived and designed the study. MS and KI conducted the field investigations, and MS and DB performed the statistical analyses. MS and KI wrote the first draft, and all authors contributed to the writing of the final manuscript.

Corresponding author

Correspondence to Masaru Sakai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, M., Iwabuchi, K. & Bauman, D. Unique habitat and macroinvertebrate assemblage structures in spring-fed stream: a comparison among clastic lowland tributaries and mainstreams in northern Japan. COMMUNITY ECOLOGY 22, 193–202 (2021). https://doi.org/10.1007/s42974-021-00048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-021-00048-5

Keywords

Navigation