Skip to main content
Log in

Numerical modelling of vertical suspended solids concentrations and irradiance in a turbid shallow system (Vaccares, Se France)

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In shallow ecosystems, the short temporal variability of available underwater irradiance is considered a major process controlling submerged macrophytes development. Mechanistic models that estimate photosynthetically available radiation (PAR) in shallow ecosystems at very short time scales are needed for use in predicting submerged macrophyte growth and persistence. We coupled a 2D horizontal circulation model with, first, a 1D vertical numerical model of suspended solid (SS) re-suspension, diffusion and settling, and next, with a model of vertical extinction of irradiance, previously validated at the same site. The study site was the Vaccarès lagoon (France) where a large data set of high frequency bottom irradiance and SS concentration were available. SS and irradiance measurements were conducted at a vertical study station, monitored over a 6 month period (from December 1995 to May 1996) characterized by wide-ranging wind velocities (1.5–18 ms−1). In addition, grain-size analyses conducted over the whole lagoon, allowed adaptation of the 1D numerical model to the silt-sized (7 μm) and clay-sized (0.3 μm) fractions that prevail in the local sediment. First, model results showed that about 60% of the variance in bottom irradiance time series can be explained by our deterministic formulations, thus representing the same level of efficiency than those already obtained by a stochastic model previously developed with the same data set. Second, model results showed that the fit of the model to the field data (SS concentrations and bottom irradiance) depended mainly on storm occurrence and season (winter or spring). Finally, model results suggested that the underwater irradiance regime was controlled by seasonal succession of the horizontal circulation of turbid water in the lagoon, with increased solids concentrations in winter, followed by submerged canopy development and decreased solids concentrations in spring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aveytua-Alcazar, L., V. F. Camacho-Ibar, A. J. Souza, J. I. Allen & R. Torres, 2008. Modelling Zostera marina and Ulva spp. in a coastal lagoon. Ecological Modelling 218: 354–366.

    Article  CAS  Google Scholar 

  • Banas, D., G. Masson, L. Leglize & J. C. Pihan, 2002. Temporal variations of sedimentation in shallow freshwater systems. Archiv für Hydrobiologie 153: 623–634.

    Google Scholar 

  • Banas, D., P. Grillas, I. Auby, F. Lescuyer, E. Coulet, J. C. Moreteau & B. Millet, 2005. Short time scale changes in underwater irradiance in a wind-exposed lagoon (Vaccarès lagoon, France): efficiency of infrequent field measurements of water turbidity or weather data to predict irradiance in the water column. Hydrobiologia 551: 3–16.

    Article  Google Scholar 

  • Bernard, G., C. F. Boudouresque & P. Picon, 2007. Long term changes in Zostera meadows in the Berre lagoon (Provence, Mediterranean Sea). Estuarine Coastal and Shelf Sciences 73: 617–629.

    Article  Google Scholar 

  • Best, E. P. H., C. P. Buzzelli, S. M. Bartell, R. L. Wetzel, W. A. Boyd, R. D. Doyle & K. R. Campbell, 2001. Modeling submersed macrophyte growth in relation to underwater light climate: modeling approaches and application potential. Hydrobiologia 444: 43–70.

    Article  Google Scholar 

  • Blindow, I., 1992. Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology 28: 15–27.

    Article  Google Scholar 

  • Bos, A. R., T. J. Bouma, G. L. J. de Kort & M. M. van Katwijk, 2007. Ecosystem engineering by annual intertidal seagrass beds: sediment accretion and modification. Estuarine, Coastal and Shelf Science 74: 344–348.

    Article  Google Scholar 

  • Byun, D. S., X. H. Wang, M. Zavatarelli & Y. K. Cho, 2007. Effects of resuspended sediments and vertical mixing on phytoplankton spring bloom dynamics in a tidal estuarine embayment. Journal of Marine Systems 67: 102–118.

    Article  Google Scholar 

  • CERC, 1975. Shore Protection Manual, Vol. I. US Army Corps of Engineers, Washington.

    Google Scholar 

  • Chamley, H., 1971. Recherches sur la sédimentation argileuse en Méditerranée. Sciences Géologiques 35, Strasbourg.

    Google Scholar 

  • Charpentier, A., P. Grillas, F. Lescuyer, E. Coulet & I. Auby, 2005. Spatio-temporal dynamics of a Zostera noltii community over a period a fluctuating salinity in a shallow coastal lagoon, southern France. Estuarine, Coastal and Shelf Science 64: 307–315.

    Article  Google Scholar 

  • Chauvelon, P., 1996. Hydrologie quantitative d’une zone humide méditerranéenne aménagée: Le bassin de Fumemorte en Grande Camargue, delta du Rhône. PhD Thesis, University of Montpellier.

  • Christofor, S., A. Vadineanu, G. Ignat & C. Ciubuc, 1994. Factors affecting light penetration in shallow lakes. Hydrobiologia 275(276): 493–498.

    Article  Google Scholar 

  • Deer, W. A., R. A. Howie & J. Zussman, 1992. An Introduction to the Rock-Forming Minerals. Longman Scientific and Technical, Harlow.

    Google Scholar 

  • Duarte, C. M., 1991. Seagrass depth limits. Aquatic Botany 40: 363–377.

    Article  Google Scholar 

  • Dunton, K. H., 1994. Seasonal growth and biomass of the subtropical seagrass Halodule wrightii in relation to continuous measurements of underwater irradiance. Marine Biology 120: 479–489.

    Article  Google Scholar 

  • Edgard, L., 1999a. Experimental analysis of structural versus trophic importance of seagrass beds. I. Effects on macrofaunal and meiofaunal invertebrates. Vie et milieu 49: 239–248.

    Google Scholar 

  • Edgard, L., 1999b. Experimental analysis of structural versus trophic importance of seagrass beds. II. Effects on fishes, decapods and cephalopods. Vie et milieu 49: 249–260.

    Google Scholar 

  • Gacia, E., T. C. Granata & C. M. Duarte, 1999. An approach to measurements of particle flux and sediment retention within seagrass Posidonia oceanica meadows. Aquatic Botany 65: 255–268.

    Article  Google Scholar 

  • Heiss, W. M., A. M. Smith & P. K. Probert, 2000. Influence of the small intertidal seagrass Zostera novazelandica on linear water flow and sediment texture. New Zealand Journal of Marine and Freshwater Research 34: 689–694.

    Google Scholar 

  • Hilton, J. A., 1985. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnology and Oceanography 30: 1131–1143.

    Article  Google Scholar 

  • Holtzapffel, T., 1985. Les minéraux argileux. Préparation, analyse diffractométrique et détermination. Société Géologique du Nord 12.

  • James, W. F., J. W. Barko & M. G. Butler, 2004. Shear stress and sediment resuspension in relation to submersed macrophyte biomass. Hydrobiologia 515: 181–191.

    Article  Google Scholar 

  • Kouchi, N., M. Nakaoka & H. Mukai, 2006. Effects of temporal dynamics and vertical structure of the seagrass Zostera caulescens on distribution and recruitment of the epifaunal encrusting bryozoa Microporella trigonellata. Marine Ecology 27: 145–153.

    Article  Google Scholar 

  • Kristensen, P., M. Søndergaard & E. Jeppesen, 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 101–109.

    Article  CAS  Google Scholar 

  • Longstaff, B. J. & W. C. Dennison, 1999. Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquatic Botany 65: 105–121.

    Article  Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Article  Google Scholar 

  • Miller, M. C., I. N. McCave & P. D. Komar, 1977. Threshold of sediment motion under unidirectional currents. Sedimentology 24: 507–527.

    Article  Google Scholar 

  • Millet, B., 1989. Modélisation hydrodynamique du bassin de Thau. Validation écologique d’un modèle numérique de circulation. Oceanologica Acta 12: 37–46.

    Google Scholar 

  • Millet, B. & O. Guelorget, 1994. Spatial and seasonal variability in the relationships between benthic communities and physical environment in a lagoon ecosystem. Marine Ecology-Progress Series 108: 161–174.

    Article  Google Scholar 

  • Moore, K. A., R. L. Wetzel & R. J. Orth, 1997. Seasonal pulses of turbidity and their relations to eelgrass Zostera marina L. survival in an estuary. Journal of Experimental Marine Biology and Ecology 215: 115–134.

    Article  Google Scholar 

  • Penhale, P. A., 1977. Macrophyte-epiphyte biomass and productivity in eelgrass Zostera marina L. and its epiphytes. Journal of Experimental Marine Biology and Ecology 42: 113–123.

    Article  Google Scholar 

  • Peterson, E. L., 1999. Benthic shear stress and sediment condition. Aquacultural Engineering 21: 85–111.

    Article  Google Scholar 

  • Pihl, L., S. Baden, L. Kautsky, P. Ronnback, T. Soderqvist, M. Troell & H. Wennhage, 2006. Shift in assemblage structure due to the loss of seagrass Zostera marina habitats in Sweden. Estuarine, Coastal and Shelf Sciences 67: 123–132.

    Article  Google Scholar 

  • Plus, M., A. Chapelle, P. Lazure, I. Auby, G. Levavasseur, M. Verlaque, T. Belsher, J. M. Deslou-Paoli, J. M. Zaldivar & C. N. Murray, 2003. Modelling of oxygen and nitrogen cycling as a function of macrophyte community in the Thau lagoon. Continental Shelf Research 23: 1877–1898.

    Article  Google Scholar 

  • Preen, A. R., W. J. Lee Wong & R. G. Coles, 1995. Flood and cyclone related loss, and partial recovery, of more than 1000 km² of seagrass in Hervey Bay, Queensland, Australia. Aquatic Botany 52: 3–17.

    Article  Google Scholar 

  • Sheng, Y. P. & T. Kim, 2008. Skill assessment of an integrated modelling system for shallow coastal and estuarine ecosystems. Journal of Marine Systems 76: 212–243.

    Article  Google Scholar 

  • Soulsby, R., 1997. Dynamics of Marine Sands. Thomas Telford Publisher, London.

    Google Scholar 

  • Stefan, H., J. Cardoni, F. Schiebe & C. Cooper, 1983. Model of light penetration in a turbid lake. Water Resources Research 19: 109–120.

    Article  Google Scholar 

  • Thill, A., S. Moustier, J. M. Garnier, C. Estournel, J. J. Naudin & J. Y. Bottero, 2001. Evolution of particle size and concentration in the Rhône river mixing zone: influence of salt flocculation. Continental Shelf Research 21: 2127–2140.

    Article  Google Scholar 

  • Vella, C., T. J. Fleury, G. Raccasi, M. Provansal, F. Sabatier & M. Bourcier, 2005. Evolution of the Rhône delta plain in the Holocene. Marine Geology 222–223: 235–265.

    Article  Google Scholar 

  • Vermaat, J. E., F. C. A. Verhagen & D. Lindenburg, 2000. Contrasting responses in two populations of Zostera noltii Hornem. to experimental photoperiod manipulation at two salinities. Aquatic Botany 67: 179–189.

    Article  Google Scholar 

  • Vlag, D., 1992. A model for predicting waves and suspended silt concentration in a shallow lake. Hydrobiologia 235/236: 119–131.

    Article  Google Scholar 

  • Winterwerp, J. C., 1989. Cohesive sediments. In flow induced erosion of cohesive beds. A literature survey. Rijkswaterstaat-Delft Hydraulics, Delft. Report 25.

  • Zieman, J. C. & R. G. Wetzel, 1980. Productivity in seagrasses: methods and rates. In Philips, R. C. & C. P. McCoy (eds), Handbook of Seagrass Biology. Garland STPM Press, New York: 87–116.

  • Zimmerman, R. C., A. Cabello-Pasini & R. S. Alberte, 1994. Modeling daily production of aquatic macrophytes from irradiance measurements: a comparative analysis. Marine Ecology-Progress Series 114: 185–196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Millet.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millet, B., Robert, C., Grillas, P. et al. Numerical modelling of vertical suspended solids concentrations and irradiance in a turbid shallow system (Vaccares, Se France). Hydrobiologia 638, 161–179 (2010). https://doi.org/10.1007/s10750-009-0038-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0038-9

Keywords

Navigation